CRREL COR

REPORT 88-6

AD-A199 637

US Army Corps of Engineers

Cold Regions Research & Engineering Laboratory

Temperature and structure dependence of the flexural strength and modulus of freshwater model ice

CRREL Report 38-3

June 1988

Temperature and structure dependence of the flexural strength and modulus of freshwater model ice

Anthony J. Gow, Herbert T. Ueda, John W. Govoni and John Kalafut

Prepared for OFFICE OF THE CHIEF OF ENGINEERS

UNCLASSIFIED

	_	_	_	-	_	_	_	 _				_	_		_		_	 _					_
Ş	E		Ū	R	T	Y	C	٧S	S	ĪĒ	IČ	Α	Ť	10	N	7	١F	Н	ıis	ī	$\overline{\mathbf{A}}$	G	Ē

14. REPORT S			DOCUMENTATIO	N PAGE		OMB No. 0704-0188 Exp. Date: Jun 30, 1			
Unclassif	SECURITY CLASS	IFICATION		1b. RESTRICTIVE	MARKINGS				
2a. SECURITY	'CLASSIFICATIO	N AUTHORITY		3. DISTRIBUTION	/AVAILABILITY C	F REPORT			
2b. DECLASSI	IFICATION / DOW	NGRADING SCHEDU	ULE	Approved for public release; distribution is unlimited.					
4. PERFORMII	NG ORGANIZAT	ION REPORT NUMBE	R(S)	5. MONITORING			MBER(S)		
CRREI	L Report 88	-6		S. M.					
6a NAME OF U.S. Arm	F PERFORMING O	ORGANIZATION ions Research	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MO					
and Engin	neering Labo	oratory	CECRL	Office of the	e Chief of E	ngineers			
6c. ADDRESS	(City, State, and	d ZIP Code)		7b. ADDRESS (Cit	ty, State, and ZIP	Code)			
Hanover,	New Hamps	shire 03755-129	90	Washington,	D.C. 20314	-1000			
8a. NAME OF ORGANIZA	F FUNDING/SPO ATION	PNSORING	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN	T INSTRUMENT I	DENTIFICATI	ON NUMBER		
8c ADDRESS	(City, State, and	ZIP Code)	<u> </u>	10. SOURCE OF F	UNDING NUMBE	RS			
	, 31-77 a raine a raine	,		PROGRAM		TASK	WORK UNI		
				ELEMENT NO. NO. 4A161		NO. SS	ACCESSION		
	clude Security C		·	6,11,02A	102A124	33	002		
		FROM	OVERED TO	Kalafut, Jo 14. DATE OF REPO June 1	RT (Year, Month	, <i>Day</i>) 15.	PAGE COUNT 52		
	ENTARY NOTAT	FROM		14. DATE OF REPO	RT (Year, Month	, <i>Day)</i> 15.			
13a. TYPE OF 16. SUPPLEMI 17.		FROM	TO 18. SUBJECT TERMS	June 19	RT (Year, Month 988 e if necessary an	d identify t	52		
16. SUPPLEMI	ENTARY NOTAT	FROM	18. SUBJECT TERMS Cantilever bear	14. DATE OF REPOUT June 19 (Continue on reversem tests Ice	RT (Year, Month 988 e if necessary an structure	d identify i	52 by block number) rain modulus		
16. SUPPLEMI 17. FIELD 19. ABSTRACT	COSATI (GROUP	FROM TION CODES SUB-GROUP reverse if necessary	18. SUBJECT TERMS Cantilever bea: Flexural streng Freshwater mo	(Continue on revers m tests Ice th Ice del ice Sin	e if necessary and structure temperature apply supported	d identify i St e St ed beam	52 by block number) rain modulus ress concentra tests		
16. SUPPLEMI 17. FIELD 19. ABSTRACT This reporture to the perature in their for interest in their for interest in the perature of cantilever and at the befor simplement in the perature of cantilever at the peratu	COSATI CO	SUB-GROUP TON SUB-GROUP Teverse if necessary results of sma or ice types, SI o -19°C showed racteristics, and rystals in the ice ported beams a tension. It was tension. It	18. SUBJECT TERMS Cantilever bear Flexural streng Freshwater mo and identify by block Il beam testing co and S2, encounted that macrocryst and that these differe and the therma indicated a virtual s also determined ppreciable stress ut which, in most al strengths did n in parallel with co ported beams of reasing from 1650	(Continue on reversem tests Ice the lice Ice del ice Sin number) Ice del ice Ice del ice d	e if necessary and structure structure temperature ply supported the sheets. Test columnar (Stributable to the beams. I nee of flexure that can red substantially kPa for car ins. The higher onearly 260 CURITY CLASSIFIC fied	d identify a Steed beam ce corrests of 730 (22) ice distranged corner luce the relieved tilever test flexus surface i 0 kPa at CATION	by block number) rain modulus ress concentratests sponding in str beams in the ffer appreciable ins in the size a testing of cant gth on the tem es of convention intrinsic flexue d by drilling ho beams or 1650 ral strengths w n tension, with -19°C. Beams		
16. SUPPLEMI 17. FIELD 19. ABSTRACT This report their for their for in their for a ture of cantilever and a ture of cantilever strength at the befor simplemeasured average 20. DISTRIBUTED UNCLASS 22a. NAME OF Anthony	COSATI CO	FROM	18. SUBJECT TERMS Cantilever beautilever beautilever beautilever modern and identify by block in the second and S2, encounted that macrocrysted that these difference and the thermal indicated a virtual salso determined preciable stress ut which, in most all strengths did not in parallel with coported beams of reasing from 1650	(Continue on reverse the state of the state	e if necessary and structure structure temperature ply supported the beams. It is the beams. The higher is the beams of the beams. The higher is the beams of the beams. The higher is the beams of the beams of the beams. The higher is the beams of the beams of the beams. The higher is the beams of the beams of the beams of the beams. The higher is the beams of the beams of the beams of the beams. It is the beams of the beams of the beams of the beams. It is the beams of the beams. It is the beams of th	d identify a Steed beam ce corrests of 730 (22) ice disvariation Parallel to Parallel to Parallel to Parallel to Parallel to Parallel to Paralle to Paralle to Paralle to Paralle to Paralle to Paralle verification (22c. OF CEC)	by block number) rain modulus ress concentre tests sponding in str beams in the ffer appreciable ins in the size of testing of cant gth on the tem rs of conventio intrinsic flexue d by drilling ho beams or 1650 ral strengths we n tension, with -19°C. Beams		

THE RESERVE OF THE PROPERTY OF

UNCLASSIFIED

19. Abstract (contid)

made to fail with bottom in tension tested about 35% weaker because of the greatly increased size of crystals in the bottom of S2 ice sheets. Beams of S1 ice yielded flexural strengths midway between those measured on S2 ice. This behavior, which occurs despite the fact that crystal size in S1 ice is always very much larger than in the coarsest-grained S2 ice, is attributed to crystal orientation effects in which the dominant vertical c-axis structure that characterizes S1 ice forces tensile failure to propagate in the hard-fail plane of the crystals. It was also determined that temperature gradients decreased flexural strengths in simply supported beams, by as much as 45-50% at the lai rest temperature gradients, compared to isothermal simply supported beams tested at the same ambient air temperatures. Strain modulus measurements showed little dependence on either the temperature of the beam or its flexural strength, with average values ranging from 5-7 GPa for cantilever and parallel simply supported beams, and 6-8 GPa for isothermal simply supported beams.

PREFACE

This report was prepared by Dr. Anthony J. Gow, Research Geologist, and John W. Govoni, Physical Science Technician, Snow and Ice Branch, Research Division; Herbert T. Ueda, Mechanical Engineer, and John Kalafut, Electropics Engineer, Engineering and Measurement Services Branch, Technical Services Division, U.S. Army Cold Regions Research and Engineering Laboratory. The study was funded under DA Project 4A161102 AT24, Research on Snow, Ice and Frozen Ground; Task SS, Combart Service Support; Work Unit 002, Physical Properties of Snow and Ice.

This report was technically reviewed by Dr. John Dempsey (Clarkson University) and Dr. Jean-Claude Tatinclaux (CRREL). The authors wish to thank Betsy Holt for tabulation, compilation and organization of the large quantity of raw data and Lynne Martel for preparing the appendix tables. The assistance of David Fisk, who helped with some of the testing, and of the word processing, photo services, drafting and editing sections is also appreciated.

The contents of this report are not to be used for advertising or promotional purposes. Citz ion of brand names does not constitute an official endorsement or approval of the use of such commercial products.

Acces	sion For	
	GRALI	X
DTIC		恒
	onneed	
Justi	fication_	
Re		
Distr	ibution/	
Avai	lability	Codes
	Avall an	d/or
Dist	Specia	l į
]]]	
I A.I	/	

CONTENTS

	Page
Preface	ii
Introduction	1
Test tank simulation	1
Growth characteristics of experimental ice sheets	3
Ice sheet 1	4
Ice sheet 2	4
Ice sheet 3	5
Ice sheet 4	5
Ice sheet 5	6
Ice sheet 6	6
Ice sheet 7	9
Ice sheet 8	9
Nature of testing program	10
Experimental techniques	11
Beam preparation	11
Cantilever beam breaker	11
Breaker for simply supported beams	13
Results and discussion	14
Cantilever beams	14
Parallel simply supported beams	19
Isothermal simply supported beams	22
Conclusions	27
Literature cited Appendix A: Flexural strength and strain modulus measurements of cantilever and	28
simply supported beams of freshwater model ice	31
Figure	
1. Vertical thin sections of crystal structure in naturally frozen lake ice and in	
model freshwater ice grown in the refrigerated tank at CRREL	2
2. Typical ice growth curves for sheets grown in the CRREL tank	3
3. Vertical and horizontal thin sections of seeded columnar S2 ice structure at dif-	,
ferent stages of growth in ice sheet 1, photographed between crossed polar-	
oids to delineate the outlines of individual crystals	4
4. Vertical and horizontal thin sections of seeded (S2) columnar ice from two dif-	•
ferent locations on ice sheet 2.	5
5. Vertical and horizontal thin sections of unseeded macrocrystalline S1 ice from	J
two different locations on ice sheet 3	6
6. Vertical and horizontal thin section structure of crystals in seeded S2 type ice in	•
ice sheet 4	7
7. Vertical and horizontal thin section structure in unseeded macrocrystalline S1	•
type ice in ice sheet 5	7
	•
8. Vertical thin section from ice sheet 6 showing the transition between seeded (S2) and unseeded (S1) ice types	۵
9. Vertical and horizontal thin sections from seeded and unseeded parts of ice	8
sheet 6	8
viive V	0

46 % start - 1 % 1 m at 1 % 1 m at 1 % 1 m at 1 m at 1 1 6 m at 1 1 6 m at 1 m	Page
10. Vertical and horizontal thin sections taken at different stages of growth of ice	9
sheet 7 (seeded)	,
different locations on ice sheet 8	10
12. Technique used to prepare ice beams with straight vertical and parallel sides	11
13. Experimental setup for measuring flexural strengths and strain moduli of canti-	••
lever beams	12
14. Closeup of beam deflection measuring device	12
15. Load-time and deflection-time records for cantilever beam 21 from ice sheet 2	
tested with bottom in tension	13
16. Breaker for simply supported beams, with deflection device in place, in readi-	
ness for test.	13
17. Load-time and deflection-time records for simply supported beam 8 from ice	
sheet 3 tested with top in tension	14
18. Variation with temperature of the flexural strength of cantilever beams of S1	
and S2 ice	14
19. Strain modulus data of cantilever beams of S1 and S2 ice versus temperature	
measured at the top of the ice sheet	16
20. Layout of beams used to investigate stress concentration effects at the roots of	
cantilever beams	18
21. Variation with temperature of the flexural strength of simply supported beams	
of S1 and S2 ice tested in parallel with cantilever beams	20
22. Strain modulus versus temperature of simply supported beams tested in con-	
junction with cantilever beams	20
23. Variation with temperature of the flexural strength of isothermal simply sup-	
ported beams of S1 and S2 ice	24
24. Strain modulus versus temperature of isothermal simply supported beams	24
25. Comparative relationships of flexural strengths of isothermal and parallel sim-	
ply supported beams, demonstrating temperature gradient effects	25
26. Strength difference ratios versus ambient air temperature for S2 ice and S1 ice.	26
27. A comparison of data from several sources relating the flexural strength of iso-	
thermal simply supported beams to the temperature of the ice	27
28. Flexural strength data of isothermal beams from the current series of tests com-	
pared with small beam tests on lake and river ice	27
TABLES	
Fable	Page
1. Average flexural strengths of cantilever beams	15
2. Average strain modulus of cantilever beams	15
3. Cantilever beam strengths; evaluation of stress concentrations at beam roots	18
4. Cantilever beam moduli; tests of stress concentrations at beam roots	19
5. Average flexural strengths of parallel simply supported beams	20
6. Strength difference ratios of simply supported beams and cantilever beams test-	
ed in parallel	21
7. Average strain modulus of parallel simply supported beams	22
8. Average flexural strengths of isothermal simply supported beams	23
9. Average strain modulus of isothermal simply supported beams	23

Temperature and Structure Dependence of the Flexural Strength and Modulus of Freshwater Model Ice

ANTHONY J. GOW, HERBERT T. UEDA, JOHN W. GOVONI AND JOHN KALAFUT

INTRODUCTION

Previous investigations by Gow et al. (1978) of the flexural strength of large beams of lake ice have indicated that the strength of the ice depends appreciably on its crystalline composition and temperature. This work, carried out mainly on S1 ice sheets composed of macrocrystalline ice, overlain by fine-grained snow ice, showed two things. First, that simply supported beams yielded much higher flexural strengths than the same beams tested in the cantilever mode (this behavior was attributed to the existence of sizable stress concentrations at the sharp-cornered roots c' cantilever beams; only in isothermal, structurally degraded ice did this effect disappear). Second, fine-grained ice at the top of the ice sheet reacted more strongly in tension than coarser-grained ice at the bottom. The ratio of strength for the top in tension to that for the bottom in tension occasionally exceeded 2.0, but averaged between 1.2 and 1.6, depending on the temperature of the ice sheet. This work on large ice beams has now been extended to studies of freshwater model ice under laboratory-controlled conditions using a combination of cantilever and simply supported beams to ascertain the dependence of the flexural behavior of the ice on its crystalline structure and temperature.

Several years of observations of the crystalline structure of ice sheets forming on a number of New England lakes indicate that only two major types of congelation ice are formed during quiet freezing of lake water.* These are 1) ice sheets composed of massive, irregularly shaped crystals

According to some researchers (e.g., Cherepanov and Kamyshnikova 1973), the thermal regime of the water as it is about to freeze is the critical determinant of orientation texture. According to Cherepandy (as cited in Lavrov 1971), S1 ice is formed when the temperature of the water beneath it is close to 4°C. However, if all the water is cooled to 0°C, S2 type ice is formed. Apart from Lavrov's own experiments, indicating that seeding or not seeding the water immediately prior to freezing might be just as important as the temperature regime of the water, little if any systematic attempt has been made to determine, experimentally, what the precise nature of the mechanisms are that control orientation texture in quietly frozen water.

TEST TANK SIMULATION

As a prelude to beam testing of freshwater modlice, a series of experiments was conducted in a refrigerated test tank at CRREL to evaluate both the effects of seeding of the water and its thermal condition on the orientation texture of ice sheets. The tank measured 7 by 7 m and was filled with water to a depth of 1.2 m. The water contained the same concentrations of dissolved solids (4-8 mS/m) as found in local lakes. A circulating pump installed in the bottom of the tank was used to cool the water column uniformly to any tempera-

exhibiting vertical or near-vertical c-axes, socalled S1 ice as defined by Michel and Ramseier (1971), and 2) ice sheets composed predominantly of vertically elongated crystals exhibiting mainly horizontally oriented c-axes, so-called S2 or columnar ice. This strong relationship of the size and shape of ice crystals to lattice orientation is an outstanding example of orientation texture in a natural setting and is discussed in greater detail in Gow (1986).

^{*} Lake ice sheets are composed typically of two major components, snow ice and lake ice. Snow ice forms by freezing of water-soaked snow on top of an existing ice sheet, whereas iake ice per se is formed by direct freezing of lake water to the underside of an ice sheet. The latter ice type is usually referred to as congelation ice.

ture below 4°C, the temperature of maximum density of fresh water. Water temperatures were measured to an accuracy of ± 0.2 °C with the aid of two thermocouple strings located near the edge and at the center of the tank respectively. As soon as the desired isothermal temperature between 4 and 0°C had been achieved, the pump was turned off and the air temperature of the tank lowered to -20°C to promote freezing. Freezing was initiated either by spray-seeding the surface of the water with frozen droplets (using a high-pressure nozzle directed at the ceiling of the tank) or by allowing surface crystallization to nucleate spontaneously. Crystalline texture and orientation were monitored at regular intervals during the growth of an ice sheet, mainly through examination of thin sections using a microtome technique similar to that used for lake ice (Gow 1986), sea ice (Gow and Weeks 1977) and urea-doped ice (Gow 1984) used in simulation studies of sea ice.

NAT URAL 13cm

8.5 cm

Water that was spray-seeded prior to freezing in the tank invariably produced S2 type ice, that is, columnar textured ice with substantially horizontal c-axes. Furthermore, this orientation texture always developed regardless of the thermal condition of the water column prior to seeding. We found the intensity of seeding to exercise some control on crystal size initially—the more intense the seeding the finer grained the ice at the top of the ice sheet. However, the thermal regime of the water column, whatever its temperature between 4 and 0°C, appeared to exercise little if any effect on crystal size at any stage of growth of an ice sheet. In all seeded ice sheets, the mean crystal cross-sectional diameter increased progressively with increasing thickness from about 1-2 mm, just below the seeded ice layer, to 6-7 mm at the bottom of an 11-cm-thick ice sheet.

We observed that unseeded or spontaneously nucleated ice growth, without exception, pro-

Figure 1. Vertical thin sections of crystal structure in naturally frozen lake ice (a and b) and in model freshwater ice grown in the refrigerated tank at CRREL (c and d). In the experimentally seeded ice (c), the crystals are characteristically columnar and possess substantially horizontal c-axis (Ch) orientations. In unseeded ice (d), massively sized crystals with a dominant vertical c-axis (Cy) orientation are typical; most crystals also exhibit a striated appearance. Ch type crystals may occur at the top of unseeded ice sheets but are usually eliminated rapidly by C_v type crystals. These two ice types, produced by the simple expedient of seeding or not seeding the water before freezing it, can be seen to correspond very closely with the two major ice crystal textures observed in lake ice.

9.1 cm

Figure 2. Typical ice growth curves for sheets grown in the CRREL tank. Average growth rates are 36-38 mm/day and are typical for ambient air temperatures of -20°C.

duced macrocystalline S1 ice dominated by crystals exhibiting vertical or near-vertical c-axes. In bottom ice (ice sheet growth in the tank was usually terminated after 9-12 cm of thickness was attained), the cross-sectional diameters of individual crystals in S1 type ice often exceeded the lateral dimensions of the thin sections, which measured 10 by 10 cm. As with seeded ice sheets, the thermal regime of the water column seemed to exert no significant influence on the texture or orientation of crystals in S1 type macrocrystalline ice. Full details of these and other factors affecting orientation textures in quietly frozen water are reported in Gow (1986).

As demonstrated in Figure 1, the highly contrasted structural characteristics of S1 and S2 ice grown in the test tank corresponded very closely with those observed in congelation lake ice. In several of the ice sheets, structure was examined at a number of widely spaced locations, mainly to determine if a particular orientation texture was being maintained over the entire ice sheet. No significant deviations in structure were observed, indicating that the tank was large enough to promote growth of ice sheets that were substantially free of edge effects. This is important when considering use of such a tank to grow uniformly textured ice sheets for mechanical properties testing. Another feature of ice grown in the tank was the general absence of air bubbles. Apparently, the rate of freezing was sufficiently slow (30-40 mm/day) to ensure rejection of virtually all dissolved air at the ice/water interface. The lack of air bubbles is also reflected in density measurements. These rarely yielded values less than 0.913 Mg/m³, equivalent to porosities of less than 0.5%. Representative ice growth curves are presented in Figure 2.

Our successful fabrication of S2 and S1 ice in the tank at CRREL—by the simple expedient of seeding or not seeding the water prior to freezing—gave us added confidence in using these ice sheets as realistic analogues of congelation ice for mechanical properties testing. This testing, involving measurements of flexural strength and strain modulus of small beams as a function of both the temperature and orientation texture of the ice, was begun in February 1983 and completed in November of the same year. Preliminary results of these measurements are presented in Gow and Ueda (1984).

GROWTH CHARACTERISTICS OF EXPERIMENTAL ICE SHEETS

Both S1 (unseeded macrocrystalline) and S2 (seeded columnar) type ice sheets were investigated in the current series of small beam tests. Eight ice sheets (five seeded, two unseeded and one composed of seeded and unseeded portions) were grown in the tank. Three of these ice sheets were dedicated to the investigation of stress concentra-

Figure 3. Vertical and l'orizontal thin sections of seeded columnar S2 ice structure at different stages of growth in ice sheet 1, photographed between crossed polaroids to delineate the outlines of individual crystals. Scale subdivisions in photographs of horizontal thin sections of this and subsequent structure figures measure 1 mm. Note the very substantial increase in size of crystals between the top and the bottom of the ice sheet, a very characteristic feature of columnar ice growth.

tion effects at the roots of cantilever beams. Brief descriptions of the growth characteristics and structure of the individual ice sheets, together with some pertinent remarks concerning the beam tests themselves, are given below.

ice sheet 1

This ice sheet was seeded on 22 February 1983, with the water in the tank cooled isothermally to 1.5°C. During the period of 23-28 February, the air temperature above the tank (initially set at -20°C to promote rapid initial freezing) was moderated to slow down ice growth. This resulted in no change in the texture or orientation of crystals in the ice sheet, which remained thoroughly transparent (bubble-free) throughout its entire thickness. Beam testing was begun on 28 Febru-

ary, on columnar-textured ice approximately 11 cm thick, and was completed on 7 March. The total number of beams tested was 38. Results of flexural strength and strain modulus measurements are fully tabulated in Appendix A. Examples of the crystalline structure of this S2 type ice sheet are shown in Figure 3.

Ice sheet 2

Water in the tank was cooled isothermally to 1.7°C prior to seeding on 25 March 1983. Testing was begun on 28 March and completed on 4 April, by which time a total of 128 beams had been tested. Vertical and horizontal structure sections of bubble-free S2 type ice characterizing this particular ice sheet are presented in Figure 4. Results of beam measurements are fully tabulated in Appen-

Figure 4. Vertical and horizontal thin sections of seeded (S2) columnar ice from two different locations on ice sheet 2. The crystal structures of both are essentially identical.

dix A. During testing we noted that simply supported beams tested in parallel with cantilever beams tended to yield off-center breaks, especially at the lowest ambient test temperatures. This behavior appears to be related to a temperature gradient effect since beams allowed to equilibrate to the ambient air temperature before testing (isothermal beams) only occasionally exhibited off-center failures.

Ice sheet 3

In this instance the water (previously cooled isothermally to 2.0°C) was allowed to nucleate spontaneously without seeding. Ice growth was initiated on 6 April 1983 and yielded an S1 type, bubble-free, macrocrystalline ice sheet. Actual testing of beams began on 9 April and was terminated on 14

April. This series of tests demonstrated, apparently for the first time, that SI type ice was appreciably stronger in the cantilever mode than S2 type ice for both top and bottom in tension tests. Such a difference in behavior between the two types is attributed to a change in failure mechanism, linked to the existence of large crystals having vertical c-axes in SI ice, where the failure plane, on the order of 100 cm² in most tests, may intersect only one or two crystals. In S2 ice the vertical failure plane rarely intersected less than 20 crystals. Total number of beams tested was 143. Appendix A contains a full tabulation of data. Representative structure sections are presented in Figure 5.

Ice sheet 4

This ice sheet was seeded on 22 April 1983 after

Figure 5. Vertical and horizontal thin sections of unseeded macrocrystalline S1 ice from two different locations on ice sheet 3. "Striations" within crystals in vertical sections and the "feathered" substructure of crystals in horizontal sections are typical of S1 type ice. Both features are simply optical manifestations of very minor offsets of the crystal lattice orientation.

the water in the tank had been cooled uniformly to a temperature of 0.5 °C. Beam testing was conducted during the period 25 April-5 May. Investigations of this bubble-free ice sheet included experiments with changing the beam dimensions, including increasing the width by 60% with respect to the thickness, and with varying the length-to-thickness ratio from 7:1 to 10:1. No significant changes in the flexural strength of the ice were observed as a result of either of these changes in beam dimensions. The total number of beams tested was 114. Vertical and horizontal structure sections from two different parts of the ice sheet are shown in Figure 6. Data sets for the several batteries of tests are tabulated in Appendix A.

Ice sheet 5

The tank water was cooled isothermally to

2.5°C and the surface then allowed to nucleate spontaneously without external seeding on 13 May 1983. Beam testing was begun on 18 May and completed by 23 May. The total number of beams tested was 115 and data on the dimensions, flexural stength and strain modulus are included in Appendix A. Structure sections demonstrating the macrocrystalline, bubble-free nature of this S1 type ice sheet are shown in Figure 7.

Ice sheet 6

This was a two-part sheet consisting of seeded and unseeded portions. On 3 June 1983, after circulating the water to an isothermal temperature of 0.8°C, we cove ed half of the tank with a plastic sheet while the other half was seeded to initiate growth of S2, columnar-textured ice. As soon as seeding was completed the plastic sheet was re-

9.6 cm
Figure 7. Vertical and horizontal thin section structure in unseeded macrocrystalline S1 type ice in ice sheet 5. Note the very large size of crystals at the bottom of section B, actually approaching a single crystal condition for beams tested with bottom in tension.

Figure 8. Vertical thin section from ice sheet 6 showing the transition between seeded (S2) and unseeded (S1) ice types.

moved and the unseeded water allowed to nucleate spontaneously. This composite bubble-free ice sheet was the first of three ice sheets to be used to evaluate stress concentration effects at the roots of sharp-cornered cantilever beams. These tests involved the drilling of 10- and 20-cm-diameter stress relief holes at the fixed ends of the beams. Tests were begun on 6 June and completed 9 June. A total of 53 beams was tested. Detailed data for all tests are presented in Appendix A. A vertical structure section from the S1-S2 transition region is shown in Figure 8. Representative sections of S1 and S2 type ice are presented in Figure 9.

Ice sheet 7

A seeded ice sheet was produced from water cooled uniformly to 3.0°C prior to freezing on 8 July 1983. Beginning 11 July, further tests were

made on stress riser effects at the fixed ends of cantilever beams. A total of 61 beams was tested before tests were concluded on 14 July. Full data sets are included in Appendix A. Typical examples of the columnar-textured, bubble-free structure of this ice sheet are shown in Figure 10.

Ice sheet 8

Water in the tank was cooled uniformly to 2.2°C prior to seeding on 4 November 1983. Tests were again focused on evaluating stress concentration effects at the fixed corners of cantilever beams: 78 viable beam tests were conducted during the period 7 to 9 November. Full data sets are given in Appendix A. Representative thin section photographs of crystal structure in this bubble-free ice sheet are shown in Figure 11.

Figure 11. Vertical and horizontal thin sections of seeded columnar S2 type ice from two different locations on ice sheet 8.

NATURE OF TESTING PROGRAM

Testing entailed measurements, initially, on cantilever beams that were divided into two groups: those tested in parallel with the cantilever teams (these measurements were performed in three-point loading immediately following the cantilever tests to ensure that temperature profiles in the ice remained the same for both kinds of beam tests), and those beams that were allowed to equilibrate to the ambient air temperature to facilitate testing of isothermal beams. Measurements were conducted at ambient air temperatures of -1, -5, -10 and -19°C on a total of 730 beams.* These

included 312 cantilever tests, 166 beams tested in the simple support mode in parallel with the cantiliver beams and simple support tests of 252 isothermal beams.

The intrinsic value of cantilever beam tests is that they are carried out in situ and are relatively easy to do. Because such tests take account of any effect of temperature gradients* in an ice sheet, they also furnish direct measurements of the flexural strength of the ice, provided due considera-

^{*}The number of beams actually prepared exceeded 800 but because of accidental breakage, instrument malfunctions, etc., useful data were obtained on 730 beams only.

^{*}In in-situ tests of this kind, the ultimate strength of the ice sheet must be related in some degree to temperature gradients resulting from differences in temperature between the top of the ice sheet and the bottom, which must necessarily be at 0°C. For example, at an ambient air temperature of -19°C in ice 10-12 cm thick, the temperature gradient effect should be a significant factor in determining the precise manner of tensile failure, and hence, the flexural strength of the ice.

tion is given to possible stress concentration effects at the fixed ends of cantilever beams. Testing the same beams in the simple support mode should suppress any stress riser effects. Accordingly, differences in flexural strength between cantilever beams and the same beams tested in the simply supported mode should at least indicate the extent of the stress concentration effect at the root of the cantilever beams, a major consideration of results presented in this report. The main purpose of measuring the flexural strengths of isothermal beams of S1 and S2 ice was to evaluate the effects of grain size and crystal orientation changes as a function of ice temperature. Additionally, results of these tests on isothermal beams and those obtained on simply supported beams, tested in parallel with cantilever beams, were used to assess temperature gradient effects.

EXPERIMENTAL TECHNIQUES

Beam preparation

After scribing the desired beam arrangement on the ice surface with a chisel, we used a small electric circular saw, capable of cutting ice 12 cm thick, to prepare beams with straight parallel and vertical sides (Fig. 12). In practice the circular saw was used to cut to a depth of about three quarters of the ice thickness, a coarse-toothed timber saw then being used to cut the remaining quarter.

Cantilever beam breaker

The cantilever beam breaker (Fig. 13) consisted basically of a manually operated screwjack with a threaded rod of 1.6 mm (0.063 in.) pitch pushing on a spring-loaded plunger. The plunger was fitted with an Interface Model SM-100, 443-N (100-lb) capacity load cell, to which a C-shaped member was attached and loosely clamped to the free end of the cantilever beam. With this device cantilever beams could be tested in either the pull-up (bottom in tension) or push-down (top in tension) modes. The screwjack assembly was attached to a frame that could be clamped firmly to one of a pair of heavy 31-cm (12-in.) I-beams spanning the center of the tank. The tank was large enough to allow about 40 beams to be cut and tested on each side of the I-beams. Temperatures at the tops of beams were measured with either dial stem thermometers accurate to -0.5°C, or mercury thermometers with a measurement precision of -0.2°C. Bottom ice, naturally, remained at 0°C. A Schaevitz LVDT (Linear Variable Differential Transformer) with a sensitivity of 3.2 V/mm was used to measure beam tip deflections. The measur-

Figure 12. Technique used to prepare ice beams with straight vertical and parallel sides. In this instance beams are being prepared for in-situ cantilever testing, followed by testing in the simple support mode.

Figure 13. Experimental setup for measuring flexural strengths and strain moduli of cantilever beams. This apparatus, clamped firmly to the I-beam spanning the tank, permits testing in both the pushdown and pull-up modes.

ing device is shown being positioned in Figure 14. Measurements were made relative to the uncut, adjoining ice.

The design of the beam breaker permitted the rate of beam loading to be controlled readily by the operator cranking the handle of the screwjack. The majority of beams were loaded to failure in less than 1 second (the time from load take-up to failure). Signals from the load cell and LVDT were transmitted to a Vishay BA-4 signal conditioner and recorded versus time on a two-channel Gould-Brush 222 strip chart recorder. A typical example of data output is shown in Figure 15.

Cantilever beam lengths averaged 105-110 cm and the ratio of length to width to thickness averaged 10:1:1. Measurements in which this ratio was changed to 7:1:1 in one battery of tests, and to 10:1.6:1 in another, yielded no significant changes in calculated values of either the flexural strength or strain modulus.

Figure 14. Closeup of beam deflection measuring device. Device is moved to the free end of the beam immediately before testing. Deflections are measured relative to the uncut ice adjoining the cantilever beam.

Flexural strength, S, and strain modulus, E, were calculated from simple elastic beam theory using the equations:

$$S = \frac{6PL}{wh^2} \tag{1}$$

and

$$E = \frac{4}{w} \left(\frac{L}{h}\right)^3 \frac{P}{d} \tag{2}$$

where P =failure load

L = length of the beam from point of failure to the point of load application

w =width measured at the failure plane

h =thickness measured at the failure plane

d = beam tip deflection at failure.

The calculated values of flexural strength and strain modulus are estimated to be accurate to

Figure 15. Load-time and deflection-time records for cantilever beam 21 from ice sheet 2 tested with bottom in tension. Time to failure was 0.45 seconds.

±4%. However, these values are necessarily subject to certain assumptions implicit in the formulation of eq 1 and 2. These assumptions, particularly those concerning the homogeneity and isotropic condition of the material being tested, are rarely satisfied in either natural or laboratory-grown ice sheets. Indeed, a major aim of the present work was to assess the effect, on flexural characteristics,

of departures from an isotropic, homogeneous medium—for instance, grain size variations and crystal orientation changes in the ice. Since the measurement techniques closely followed the guidelines recommended by Schwarz et al. (1981) for small beam testing per se, the data obtained in the current series of tests are considered to represent reasonable index values of the flexural characteristics of freshwater model congelation ice sheets grown in the CRREL tank.

Breaker for simply supported beams

This device (Fig. 16) consisted of an I-beam main frame with two cylindrical reaction bars that could accommodate beams between 71 and 102 cm long. A three-point* loading arrangement was used in which force was applied to the center of the beam by means of a manually operated wormgear screwjack, having a 4450-N (1000-lb) capacity, and attached to the midpoint of the main

^{*}Four-point loading is generally advocated on the assumption that such an arrangement eliminates the shear stresses in the length of beam between the applied loads, and that the maximum moment occurs along the length of beam between the applied loads and not at a single point. However, Timeo and Frederking (1962), in tests on similar freshwater ice sheets, observed no significant differences in strength between three-and four-point loading arrangements.

Figure 16. Breaker for simply supported beams, with deflection device in place, in readiness for test. Breaker is designed for three-point loading and can accommodate beams 71 to 102 cm long with width and thickness dimensions of up to 14 cm.

Figure 17. Load-time and deflectiontime records for simply supported beam 8 from ice sheet 3 tested with top in tension. Time to failure was 0.7 seconds.

frame, which itself was clamped firmly to a 31-cm I-beam spanning the center of the tank. Force was distributed across the width of the beam through a transverse bar. A 2230-N (500-lb) capacity Interface Model SM-500 load cell located between the screwiack and distribution bar was used to sense the load. One turn of the screwjack provided 1.27 mm of vertical displacement. With this setup, time to failure from initial takeup of the load required less than 1 second. Center deflections were measured with the same LVDT that we used for the cantilever beams. The LVDT was attached to a bar, supported by two legs resting on the beam directly above each reaction point; it was located slightly to the side of the transverse bar so as not to interfere with the loading mechanism.

As with the cantilever tests, the load cell and transducer signals were transmitted to a two-channel strip chart recorder. A typical example of data output from a three-point loading test is shown in Figure 17. The length-to-width-to-thickness ratio of simply supported beams averaged 9:1:1. The flexural characteristics of beams were calculated on the basis of

$$S = \frac{3}{2} \frac{PL}{wh^2} \tag{3}$$

and

$$E = \frac{1}{4w} \left(\frac{L}{h}\right)^3 \frac{P}{d} \tag{4}$$

where terms in these equations are the same as

those for eq 1 and 2. In the case of simply supported beams, L is the distance between the two end supports (beam span) and d is the mid-point deflection at failure. The weight of the beam was also taken into account when we calculated its flexural strength and strain modulus, the values of which are estimated to be accurate to $\pm 5\%$. Periodic measurements of temperatures at the tops and bottoms of beams were made with mercury thermometers having a measurement precision of ± 0.2 °C.

RESULTS AND DISCUSSION

Candlever beams

Detailed results for all beams tested in the current series of measurements are included in Appendix A. Averaged values for individual ice sheets are listed in Table 1 (flexural strength) and Table 2 (strain modulus). Weighted averages of flexural strength and strain modulus for both S1 and S2 ice sheets at the four test ambient air temperatures are also included in Tables 1 and 2 and these data are plotted in Figures 18 and 19 respectively.

Conventional cantilever beam tests

Results of conventional cantilever beam tests on S2 ice (Fig. 18) show only a weak dependence of strength on surface temperatures for beams tested with the top in tension, flexural strengths increasing from about 700 kPa at -1 °C to only about 900

Figure 18. Variation with temperature of the flexural strength of cantilever beams of S1 and S2 ice. Symbols T and B refer to top and bottom in tension tests respectively. Note that in bottom in tension tests, temperatures of the fiber in tension are necessarily at 0°C. Number of beams used to determine average flexural strength values for each data point are also indicated.

Table 1. Average flexural strengths (kPa) of cur-tilever beams.

Ambient temperature		See	ded ice sh			I Inc.	eded ice s	haste	Average			
(°C)	No. I	No. 2	No. 4	No. 7	No. 8	No. 3	No. 5	No. 6	Seeded	Unseeded		
- 1		622*	754		711	958	997		687 ± 81	975 ± 132		
- •		6891	789		743	1040	1053		741 ± 84	1045 ± 147		
					686							
					754							
- 5	714	673		904		888	907	871	735 ± 121	891 ± 104		
	-	705		812		1165	1297	954	743 ± 67	1181 ± 183		
	724	778										
	-	717										
-10		734	766			824	1133		786 ± 89	943 ± 183		
		73 9	815			1188	1212		767 ± 75	1199 ± 106		
			905									
			745									
-19		859	946			922	940		903 ± 107	930 ± 237		
		680	874			1164	1062		745 ± 134	1123 ± 167		
Total												
beams	12	67	40	7	19	60	40	4	145	104		

Table 2. Average strain modulus (GPa) of cantilever beams.

Ambient temperature		See.	ded ice sh	2100		Unse	eded ice s	choots	Average		
(°C)	No. 1	No. 2	No. 4	No. 7	No. 8	No. 3	No. 5	No. 6	Seeded	Unseeded	
- 1			4.4*		5.2	5.4	5.8		4.9 ± 0.6	5.6 ± 0.9	
			4,1†		4.6	5.7	5.6		4.4 ± 0.4	5.7 ± 0.4	
- 5	4.1	4.4				6.6	6.1	4.6	4.3 ± 0.7	6.3 ± 0.9	
•	_	4.7				6.8	5.8	5.6	4.7 ± 0.9	6.3 ± 0.9	
-10			4.6								
			4.9								
		5.4	4.5			6.8	6.0		4.7 ± 0.9	6.4 ± 1.2	
		5.0	4.5			6.1	5.1		4.6 ± 0.4	5.7 ± 0.8	
		3.0	7.3			0.1	3.1		4.0 ± 0.4	J.7 I 0.8	
-19		_	4.9			5.4	6.v		4.9 ± 0.4	5.6 ± 0.9	
		5 0	4.9			5.7	5.0		4.9 ± 0.4	5.4 + 1.2	
Total											
ber ms	11	31	38		19	56	37	-4	99	97	

^{*} Top in tension.
† Bottom in tension.

^{*} Top in tension. † Bottom in tension.

Figure 19. Strain modulus data of cantilever beams of S1 and S2 ice versus temperature measured at the top of the ice sheet. Symbols T and B refer to top and bottom in tension tests respectively.

kPa at -19°C. For beams tested with their bottoms in tension (tension fiber at 0°C), flexural stength showed even less dependence on temperature, strengths remaining remarkably constant at around 750 kPa over the same range of ambient air temperatures. Part of the increased strength shown by beams tested with the top in tension may reflect the effect of the smaller grain size in the tops of S2 (columnar-textured) ice sheets with decreasing test temperatures. Beams of S2 ice characteristically failed in vertical planar fashion. When viewed in reflected light, the individual outlines of columnar crystals could be clearly delineated on the fracture surface.

Timco and Frederking (1982) measured an average value of 770 kPa for S2 ice beams tested with top in tension at -10°C. This compares very closely with the average value of 786 kPa we obtained on 17 beams from two S2 type ice sheets tested at the same temperature. Lavrov (1971) reports somewhat higher values for his "structurally simulated ice" (S2 ice equivalent), on the order of 1100 kPa for beams tested at -7 to -5°C with the top in tension. Neither Timco and Frederking nor Lavrov tested beams with bottoms in tension, nor did they examine the flexural strength of macrocrystalline S1 ice sheets.

Tests on S1 ice (Fig. 18) also failed to show any really systematic change in strength with changing surface air temperature, for either top or bottom in tension tests. However, S1 ice tested stronger overall than S2 ice. Push-down tests (top in tension) averaged around 950 kPa, whereas those beams tested in the pull-up mode (bottom in tension) ranged in strength from 1000 to 1200 kPa. This increased strength of S1 type ice (approximately 30-40% greater than that of S2 ice) reflects both the effects of the near-perfect vertical c-axis alignments of crystals in S1 ice and the very large

sizes of crystals themselves. In bottom in tension tests, for example, tensile failure frequently involved just one or two crystals in the beam cross sections. This approach to single crystal failure. which often promoted conchoidal fracture surfaces, more than compensated for the fact that the bottom ice was at or close to 0°C. The net result is that S1 ice with bottom in tension tested the strongest of all cantilever beams. This obvious control of oriented crystal structure in enhancing the flexural strength of S1 ice, together with the weak to virtual non-dependence of strength of both S1 and S2 ice on ambient air temperatures over the range -1 to -19°C, are the most striking features of the cantilever beam tests conducted in the CRREL tank.

In these and other tests of laboratory-grown ice sheets, the flexural strengths of cantilever beams are generally much higher than those measured in the field. For example, the maximum strengths measured by Gow et al. (1978) on large cantilever beams of lake ice never exceeded 1000 kPa, and these were only observed in the coldest ice that was composed of snow ice with grain diameters on the order of 1 mm. Additionally, Gow et al. (1978) reported a significant decrease in the flexural strength of the ice with increased exposure to elevated air temperatures and solar radiation during the late winter and spring. This exposure leads to a degrading of the ice structure that in the extreme case manifests itself in the form of grain boundary melting and candling. This is accompanied by significant loss of strength to values of 400 kPa or less. However, such behavior was not observed in any of the ice sheets in the CRREL test tank, not even in those sheets held at temperatures of 0°C for extended periods of time nor in beams removed from the water and also held at 0°C for long periods. Nor did the ice lose structural integrity—there was no sign of crystal boundary modification or candling, for example. Such observations strongly suggest that solar radiation (not a factor in an indoor tank) is a major influence in promoting candling and concomitant loss of flexural stength in natural ice covers. This point was subsequently demonstrated when blocks of ice were taken from the tank and found to undergo rapid candling when exposed to sunlight at air temperatures around 0°C.

Our conventional cantilever beam tests also included a series in which changes in the dimensions of beams of S2 ice were investigated to determine the effect, if any, of such changes on the flexural properties of the ice. The tests were similar to

those performed by Frederking and Timco (1983) who reported that the flexural strength of S2 ice is essentially independent of length but decreases with increasing beam width. The results of beam length change, based on tests from ice sheet 4 (28 April test series, Appendix A), tabulated below, show a slight but not statistically significant change in strength for a L:w:h change from 11:1:1 to 8:1:1. Data are in accord with those of Frederking and Timco (1983).

L:w;h	£;w;h
11:1:1	8;1;1
$\bar{S}_T = 754 \text{ kPa}$ $\bar{S}_T = 796 \text{ kPa}$	$\bar{S}_T = 777 \text{ kPa}$ $\bar{S}_T = 833 \text{ kPa}$

where B indicates bottom in tension and T top in tension. Also, measurements involving a 60% increase in beam width, while keeping the length and thickness constant (25 April test series, Appendix A), resulted in no significant change in flexural strength of the beams.

L:w:h	L:w:h
10:1:1	8:1.6:1
$ \bar{S}_{T} = 766 \text{ kPa} $ $ \bar{S}_{R} = 770 \text{ kPa} $	$\overline{S}_T = 741 \text{ kPa}$ $\overline{S}_R = 807 \text{ kPa}$.

This result might seem at variance with the reported conclusion of Frederking and Timco (1983) that increasing the beam width decreases the strength. However, an inspection of the data in Figure 8 of their paper shows that for beam width changes of between one and two times the beam thickness, flexural strength actually increased (from about 750 kPa to nearly 1000 kPa) before decreasing progressively to about 500 kPa at beam widths four times the thickness

These observations that flexural strength is not significantly influenced by beam width changes of between one and two times the beam thickness help resolve a difference in guidelines for small beam testing recommended by Schwarz et al. (1981) and Lavrov (1971). Whereas Schwarz et al. recommended that beam widths should measure one to two times the beam thickness, Lavrov advocated the use of beams with a square cross section. Both recommendations appear valid. In most of the tests reported here, beams with a square cross section were used.

Individual measurements of strain modulus are

listed in Appendix A and averaged values for cantilever beams are presented in Table 2. Averaged values of strain modulus based on all tests at the four test temperatures are plotted in Figure 19. S2 ice showed no significant differences in modulus between top or bottom in tension tests at any temperature, and no significant trend with temperature per se was observed either. Results for S2 ice then are that strain moduli, ranging between 4 and 5 GPa, are essentially independent of temperature over the range -1 to -19°C, S1 ice beams similarly showed no significant differences in modulus between top and bottom in tension tests and values again appear virtually independent of temperature. However, strain moduli of S1 ice are appreciably higher than those of S2 ice, 5 to 6 GPa or on the order 10 to 20% larger, Lavrov (1971) reported strain moduli of about 2 GPa for beam strengths of 1000-1100 kPa in S2 ice. Timco and Frederking (1982) reported strain moduli of 1.6 GPa for top in tension tests of S2 ice with flexural strengths of about 770 kPa. However, Timco and Frederking, unlike Lavrov (1971), found no dependence of strain modulus values on loading rate. The most recent data are from Frederking and Svec (1985) who, while measuring flexural characteristics of freshwater ice in an outdoor pool, obtained strain modulus values of 5.4 GPa for fine-grained ice at the top of the ice sheet. These data are similar to ours (4 to 5 GPa) that were obained on fine-grained congelation ice at the tops of S2 ice sheets. Variations between the different observers probably reflect differences in both test techniques and ice types. Lavrov (1971), for example, appears to have incorporated results of tests from both laboratory-grown and natural ice covers.

Modified cantilever beam tests

In addition to testing conventional cantilever beams, we also dedicated parts of three ice sheets, numbers 6, 7 and 8, to studies of stress concentration effects at the roots of modified cantilever beams. Evidence for the existence of stress concentrations has been obtained mainly from field testing of large cantilever beams, but opinions as to the magnitude of such an effect vary widely. Both Butyagin (1966) and Lavrov (1971) argue against the existence of significant external stress risers, Butyagin on the basis of comparative tests of cantilever and simply supported beams that failed to show any significant difference in strength between the two, and Lavrov on the basis of tests on cantilever beams with their root sec-

tions flured to reduce external stress concentrations. However, Lavrov observed that the flexural strengths of simply supported beams generally exceeded those of cantilever beams. This Lavrov attributed to fundamental differences in the mechanics of failure of simply supported and cantilever beams.

Gow et al. (1978) conducted tests on both cantilever and simply supported beams of temperate lake ice and found that the ratio of flexural strength of cantilever to simply supported beams varied from 1:1 at cantilever beam strengths of around 400 kPa to 1:2 for cantilever beam strengths of 900 kPa (the same beams tested in the simple support mode failing at about 1800 kPa). This behavior was attributed to the effect of stress concentrations at the sharp-cornered roots of cantilever beams, with the maximum effect occurring in cold ice substantially free of structural imperfections. This explanation implied that the magnitude of the stress concentration effect depends on both the thermal and structural condition of the ice, and that in ice that has undergone extensive thermal degradation, leading to loss of cohesion between the grains and crystals of ice, the stress riser effect may be eliminated altogether. Määttänen (1976), working with beams of brackish water ice, found that cantilever beams with a large radius of curvature at the root were about 30% stronger than sharp-cornered conventional beams. Gow and Ueda (1984), experimenting with freshwater model ice, also reported significant increases in flexural strength of cantilever beams when their roots were rounded out by drilling. Frederking and Svec (1985), conducting tests on 35-cmthick ice in a large outdoor pool, also found that cantilever beams with holes drilled at the roots tested approximately 25% stronger than beams with roots terminated by parallel saw cuts.

To evaluate stress concentration effects in the current series of tests, measurements were made in which the normally sharp corners produced by parallel saw cuts at the roots of conventional cantilever beams were filleted by drilling 20-cm-diameter holes. We prepared these beams by first drilling 20-cm-diameter holes at intervals of 30 cm between centers and then making parallel saw cuts perpendicular to the holes so as to intersect adjacent drill holes tangentially. This arrangement, including the preparation of conventional cantilever beams alongside those with modified roots, is depicted in Figure 20. A total of 83 beams was tested, including 54 beams with filleted roots, 11 of which consisted of S1 ice and the remaining 43 of

Figure 20. Layout of beams used to investigate stress concentration effects at the roots of cantilever beams. Arrows indicate usual locations at which failure occurred for (a) filleted and (b) conventional, sharp cornered beams.

S2 ice. All beams of S1 ice and 28 of the 68 S2 ice beams were tested at an ambient air temperature of -5°C. The remaining 40 S2 ice beams were tested at an ambient air temperature of -1°C.

Filleting the roots of beams invariably resulted in small to substantial increases in flexural strength, depending on the structure of the ice, its temperature and the particular surface in tension. Results (averaged values) are listed in Table 3. These tests in effect repeated earlier experiments by Lavrov (1971), but unlike Lavrov's results our filleted beams generally failed some distance back, occasionally as much as 5 cm into the region of

Table 3. Cantilever beam strengths (kPa); evaluation of stress concentrations at beam roots (number of tests in each battery is shown in parentheses).

Trist temperature (°C)	T _u *	T _m	T _m T _u	B _u B _m	B _a
		Seeded (82) ice		
-1	699 (9)	939 (11)	1.34	749 8 65 (10) (11)	1.15
· 5	904 (3)	1199 (12)	1.33	812 868 (4) (9)	1.09
	τ	imeeded	(81) ice		
-5	87) (2)	11 66 (3)	1.34	954 1229 (2) (4)	1.29

^{*} T_u = unmodified, top in tension; B_u = unmodified, bottom in tension; T_m = modified, top in tension; B_m = modified, bottom in tension.

Table 4. Cantilever beam moduli (GPa); tests of stress concentrations at beam roots.

Test temperature		Seede	d (S2)		Unseeded (SI)					
(°C)	T,*	Ťm	B _M	B _m	Ť,	T _m	В,	B _m		
-1	4.9	3.2	4.5	3.3	_			-		
	5.5	3.8	4.8	3.4	-	-		4.2		
-5		_=_			4.6	4.9	5.6	4.3		

[•] T_u = unmodified, top in tension; B_u = unmodified, bottom in tension; T_m = modified, top in tension; B_m = modified, bottom in tension.

curvature (see cover), and at forces up to two times those needed to cause failure of conventional cantilever beams. The latter beams generally failed at or very close to the ends of the saw cuts; in both the modified and conventional beams the failure surface was vertical and planar.

Tests of S2 icc (see Table 3) show the same dependence of strength on temperature as demonstrated in Figure 18, with both modified and unmodified beams also testing strongest when the top surface was placed in tension. This probably reflects the effects of smaller grain size and lower temperatures at the top of the ice sheet. As a group, filleted beams of S2 ice, made to fail with their tops in tension, tested 30-35% stronger than unmodified beams. On the other hand, bottom in tension tests yielded much smaller differences in strength, filleted beams being on the order of 7-15% stronger. The results of our top in tension tests agree very closely with those obtained by Frederking and Svec (1985), who also found that introducing stress relief holes at the roots of cantilever beams increased flexural strength by 25-30% over that of conventional, sharp-cornered beams.

Tests of S1 ice beams also yielded increased strengths for filleted beams on the order of 30% for both top and bottom in tension, very similar to those of S2 ice beams tested with top in tension.

Modifying the roots of S2 ice beams also appears to exert some effect on the strain moduli, those beams with stress relief holes exhibiting lower values than conventional sharp-cornered cantilever beams (Table 4). No such effect was observed in beams of S1 ice. Results obtained on S2 ice beams with top in tension show the same trends as those found by Frederking and Svec (1985), who measured strain moduli of 5.4 GPa for unmodified beams compared to values of about 4.5 GPa for beams with stress relief holes drilled at the roots.

Parallel si. aly supported beams

This group of beams included all beams tested in parallel with cantilever beams. Tests of this kind involved transferring the cantilever beams from the water to the simply supported beam breaker. The actual tests were conducted in less than 2 minutes after we removed the beams from the water, thereby ensuring minimal changes in the thermal condition of the beams (ambient air temperature at the top of the beam, with the bottom at or very close to 0°C). A major reason for performing these tests in parallel with cantilever beams was to evaluate the effects of stress concentration at the sharp-cornered roots of cantilever beams; such effects should not exist in beams when both ends are freely supported. A second, but no less important, reason for carrying out parallel beam tests was to investigate the effects of temperature gradients in these ice beams via comparisons with isothermal beams of identical crystal structure tested in the same simple support mode.

Most (70%) of the simply supported beams in this series failed directly beneath the region of load application as transmitted through the transverse loading bar. The resultant fracture surfaces were generally vertical and planar, the only exceptions occurring with off-center breaks where fracture planes tended to be curved in the manner depicted in Lavrov (1971, p. 38). However, the percentage of off-center breaks tended to increase with decreasing ambient air temperature, indicating that differences in temperature between the tops and the bottoms of beams (temperature gradient factor) might influence the mechanism of failure and, possibly, the ultimate strength grained.

Detailed results of all beams tested in the parallel simple support mode are listed beside the corresponding cantilever beam data in Appendix A. Averaged values of flexural strength and strain modulus are presented in Tables 5 and 7 respec-

Table 5. Average flexural strengths (kPa) of parallel simply supported beams.

Ambient temperature		Saa	ded ic e sh	aats		Hun	eded ice s	haata	Average		
(°C)	No. 1	No. 2	No. 4	No. 7	No. 8	No. 3	No. 5	No. 6	Seeded	Unseeded	
1 0/	110. 1	710. 2	110. 1	710. 7	110.0	710. 5	110.5	110. 0	Secure	Onsetutu	
- 1		1469*	1529			1068	1566		1499 ± 85	1276 ± 271	
		846†	1006			1066	1359		935 ± 117	1163 ± 197	
- 5		1361				1215	1386		1586 ± 297	1281 ± 139	
						1114	1393		1043 ± 147	1215 ± 268	
		1810									
		1043									
-10		1521	1319			1182	1485		1454 ± 292	1292 ± 208	
		899	991			1217	1685		922 ± 131	1412 ± 316	
-19		1537	1788			1064	1462		1621 ± 356	1230 ± 242	
		822	1052			1382	1329		673 ± 140	1364 + 127	
Total											
beams		46	21			58	35		67	93	

^{*} Top in tension.

[†] Bottom in tension.

Figure 21. Variation with temperature of the flexural strength of simply supported beams of S1 and S2 ice tested in parallel with cantilever beams. Again, temperatures at bottoms of beams are at or very close to 0°C. Symbols T and B refer to top and bottom in tension tests respectively. Number of beams tested at each temperature is also indicated,

Figure 22. Strain modulus versus temperature of simply supported beams tested in conjunction with cantilever beams. Symbols T and B refer to top and bottom in tension tests respectively.

Tests of columnar type (S2) ice showed no systematic variation of flexural strength with temperature or temperature gradient for either top or bottom in tension tests. This behavior essentially parallels that observed with cantilever beams. However, on average, S2-T (top in tension) beams tested 50 to 100% stronger than S2-B (bottom in tension) beams. Such a difference in strength is attributed primarily to grain size effects, mean cross-sectional diameters of crystals at the tops of S2 ice sheets

being on the order of five times smaller than at the bottom. For example, even at the -1°C test temperature where the beams are practically isothermal (-1°C at the top, 0°C at the bottom), S2-T beams were on the order of 60% stronger than S2-B beams.

Tests of macrocrystalline S1 type ice also showed little if any systematic dependence on the temperature of the fiber in tension. This was particularly true of S1-T beams, which averaged 1200-1300 kPa over the entire range of test temperatures. However, these strengths are about 40% higher than those measured on S2-B beams despite the fact that the average cross-sectional diameter of crystals in the tension fiber of S2-B beams is an order of magnitude smaller than that of S1-T beams. Other factors being equal, small grain size should have led to greater flexural strength. The apparently contrary behavior observed in S1 ice is attributed to the failure characteristics of S1 ice per se, in which the majority of crystals exhibit vertical to near-vertical c-axis orientation. This, the crystal orientation effect, is even more pronounced in the case of S1-B tests. where the failure plane was often found to intersect as few as one or two crystals. Such behavior, in essence, approximates single crystal failure, in which the fracture plane is forced to propagate parallel to the direction of c-axis alignment, which also parallels the "hard fail" plane of single ice crystals. Not infrequently, failed S1 ice beams exhibited conchoidal fracture surfaces, rather than the vertical planar type fracture surfaces observed with S2 type ice beams.

Overall, parallel simply supported beams tested stronger than the corresponding beams tested in the cantilever mode. This was especially true of S2 ice tested with top in tension, in which the strength difference ratios of simply supported beams to cantilever beams averaged around 2.0, i.e., simply supported beams were approximately twice as strong as the same beams tested in the cantilever mode (Table 6). Other strength difference ratios listed in Table 6 varied between 1.03 and 1.44. These results are especially significant in regard to our earlier tests on cantilever beams, in which the normally sharp corners at the roots of the beams were modified by drilling 20-cm-diameter holes to provide relief from stress concentrations (see Table 3). A comparison of both sets of data (Tables 3 and 6) supports the contention that significant stress concentrations do exist at the roots of conventional cantilever beams. In macrocrystalline S1 type ice, the drilling of holes at the beam roots ap-

Table 6. Strength difference ratios of simply supported beams and cantilever beams tested in parallel.

Test temperature	Seed	ied(S2)	Unseeded(S1)			
(°C)	Top*	Bottom	Top*	Bottom		
~ 1	2.18	1.26	1.31	1.13		
~ 5	2.16	1.40	1.44	1.03		
-10	1.85	1.20	1.37	1.21		
-19	1.80	1.17	1.32	1.21		

^{*} Tension surface.

pears to substantially relieve stress risers at these locations. This situation applies to both top and bottom in tension tests and also to S2 type ice tested with the bottom in tension. However, in the case of S2 ice beams tested with the top in tension, it would appear that, despite drilling relief holes at the roots of the beams, stress riser effects still dominate tensile behavior in filleted beams. Otherwise, other factors, in addition to stress concentrations, need to be invoked to explain why simply supported beams tested with top in tension are 60-70% stronger than filleted cantilever beams with identical structural and thermal characteristics. Temperature gradients cannot be a factor since most of the tests were conducted at -1 °C ambient air temperature.

Lavrov (1971) would attribute such differences in the behavior of simply supported and cantilever beams to fundamental differences in their mechanics of failure. Lavrov further acknowledged that the bending strength of a simply supported beam should exceed that of the cantilever beam. He also determined, mainly from large beam tests, that the bending (flexural) strength of an ice cover can be obtained from cantilever beam tests by simply multiplying the latter by a correction factor of 1.5. This kind of strength difference factor is in good agreement with results reported here for S1 ice and for S2 ice if top and bottom in tension tests are averaged (Lavrov made no clear distinction between push-down and pull-up tests in reporting his results). Similar strength difference ratios have also been reported for large lake ice beams by Gow et al. (1978).

Our measurements of the flexural strength of freshwater model ice are also of interest with respect to urea ice, used for modeling sea ice, and for sea ice itself. According to Timco (1985) there is no apparent difference in flexural strength be-

Table 7. Average strain modulus (GPa) of parallel simply supported beams.

Ambient temperature (°C)		See	ded ice sh	eets		Unse	eded ice s	heets	Average		
	No. I	No. 2	No. 4	No. 7	No. 8	No. 3	No. 5	No. 6	Seeded	Unseeded	
- 1						5.6*	7,7			6.5 ± 1.5	
-						5.1†	3.0			4.9 ± 1.0	
- 5		67				4,7	8.4		6.7 ± 2.3	6.1 ± 2.0	
		_				5.7	8.3			6.8 + 1.7	
-10		2.9	5.0			5.4	6.7		3.7 ± 1.3	5.8 ± 1.5	
		2.7	4.5			5.2	8.0		3.2 ± 1.0	6.6 ± 1.6	
-19			5.0						5.0 5 1.6		
			5.4						5.4 ± 1.1		
Total	٠		•								
beams		18	10			41	24		28	65	

^{*} Top in tension.

tween either cantilever or simply supported beams of urea ice or sea ice. This behavior is attributed to the widespread occurrence of brine (urea) inclusions and air pockets in the ice that effectively relieve stress concentrations through plastic flow. This explanation is compatible with that of Gow et al. (1978) regarding thermally modified lake ice in which the structure of the ice becomes sufficiently degraded, through the combined action of elevated air temperatures and solar radiation, to reduce intrinsic flexural strengths to levels less than the stress needed to activate stress risers at the roots of cantilever beams. However, since most of the data on sea ice were obtained from warm ice, we might suspect stress concentrations to develop in beams of cold sea ice containing fewer or smaller brine pockets.

Measurements of strain modulus on a total of 115 beams (Table 7) show no definitive trends. Values vary between 5 and 7 GPa except for those obtained at -10°C on a battery of seeded (S2) ice beams, which tested low (3.7 and 3.1 GPa) relative to other tests in this series, and with those obtained on the same beams tested in the cantilever mode.

Isothermal simply supported beams

A total of 252 individual beams was tested in this series of measurements. Detailed results of isothermal beam tests are included in Appendix A. Averaged values of flexural strength and strain modulus are listed in Tables 8 and 9 respectively.

Weighted averages, plotted as a function of temperature, are presented in Figure 23 (flexural strength) and Figure 24 (strain modulus). As with the parallel simply supported beams, all tests with off-center breaks exceeding 10 cm were excluded from the averaged values listed in Tables 8 and 9. These represented less than 5% of the 252 beams tested.

Of the three types of tests performed in the current series of measurements, those involving isothermal simply supported beams yielded the clearest information concerning the effect of grain size, crystal orientation and temperature of the fiber in tension on the flexural characteristics of the ice. Isothermal beams tested the strongest overall. With regards to S2 type ice, all test series showed a substantial dependence of strength on the grain size of the fiber in tension (Fig. 23a). Significant increases in strength with decreasing temperature were also observed. Those beams tested with top in tension increased in average strength from about 1650 kPa at -1°C to nearly 2600 kPa at -19°C. In bottom in tension tests of S2 ice, flexural strength increased from about 1150 kPa at -1 °C to 1640 kPa at -19°C. In short, the flexural strength of S2-B beams at -19°C is only about equal to the strength of S2-T beams at -1 °C. Also, the ratios of strength for top and bottom in tension at the four test temperatures remain remarkably constant at 1.5, which agrees closely with the value obtained by Gow et al. (1978) on large beams of lake ice. Such differences in the flexural

[†] Bottom in tension.

Table 8. Average flexural strengths (kPa) of isothermal simply supported beams.

Ambient										4 verage		
temperature (°C)	Seeded ice sheets						Unseeded ice sheets					
	No. 1	No. 2	No. 4	No. 6	No. 7	No. 8	No. 3	No. 5	No. 6	Seeded	Unseeded	
- 1			2092*			1573	1186	1479		1651 ± 369	1381 ± 194	
			1268†			1054	1366	2237		1124 ± 131	1739 ± 487	
			1979			1394						
			1154			1090						
- 5	1629	1630	2321	2208	2184		_	1849	1315	2101 ± 384	1824 ± 220	
	1190	1324	1922	1388	1549		1394	1852	2028	1392 ± 265	1933 ± 313	
			2214									
			1241									
-10		1495	2608		2329		1739	1925		2411 ± 289	1863 ± 150	
		1273	1674		1598		1793	2102		1588 ± 166	1999 ± 326	
-19			2572				1703	2022		2572 ± 285	1885 ± 207	
			1641				2063	2026		1641 ± 122	2042 ± 184	
Total												
beams	11	7	54	17	33	36	19	35	22	158	76	

[•] Top in tension. † Bottom in tension.

Table 9. Average strain modulus (GPa) of isothermal simply supported beams.

Ambient tomporature (°C)	Seeded ice sheets							Unseeded ice sheets			Average	
	No. 1	No. 2	No. 4	No. 6	No. 7	No. 8	No. 3	No. 5	No. 6	Seeded	Unseeded	
- 1			7.1*			6.8	5.2	8.5		6.9 ± 1.4	7.4 ± 2.1	
			7.1†			7.0	5.0	6.9		7.0 ± 1.0	5.7 ± 1.1	
- 5		4.6	5.6		6.2			7.9	7.0	5.9 ± 0.7	7.3 ± 0.8	
		5.4	6.5		6.0			8.2	7.3	6.4 ± 1.0	7.6 ± 1.2	
			5.8	6.0								
			6.6	6.9								
-10		4.4	5.4		6.8		5.6			6.4 ± 1.2	5.6 ± 0.4	
		3.8	4.4		6.9		5.7			6.0 ± 1.5	5.7 ± 0.5	
-19			8.3				7.0			8.3 ± 2.3	7.0 ± 1.2	
			7.9				6.5			7.9 ± 0.9	6.5 ± 0.7	
Total												
beams		6	36	16	28	31	19	15	19	117	53	

^{*} Top in tension.

[†] Bottom in tension.

a. Ice type (number of beams tested at each temperature is also indicated).

b. Crystal size/c-axis orientation relationships in S1 and S2 ice types.

Figure 23. Variation with temperature of the flexural strength of isothermal simply supported and so so so and so ice. Symbols T and B refer to top and bottom in tension tests respectively.

strength of isothermal beams of S2 ice are primarily the result of changes in grain size between the tops and the bottoms of the ice sheets. Typically, crystal cross-sectional diameters in S2 ice grown in the CRREL test tank increased from 1-2 mm near the top to 6-7 mm at the bottom.

In contrast to S2 ice, the differences in the strength between S1-T and S1-B beams are very much less and flexural strength became essentially independent of the thermal condition of the ice once temperatures had decreased below -5°C. The actual strength values of S1 ice fall more or less midway between those obtained with S2 ice, with values obtained at temperatures below -5°C averaging around 2000 kPa for S1-B beams and about 1800 kPa for S1-T beams. This represents a less than 10% difference in strength between S1-T and

Figure 24. Strain modulus versus temperature of isothermal simply supported beams. Symbols T and B refer to top and bottom in tension tests respectively.

S1-B tests. Figure 23b, showing crystal size-crystal orientation relationships in S1 and S2 ice types, clearly demonstrates the importance of c-axis orientation relative to grain size effects. As noted earlier, grain size difference is the dominant factor controlling strength in S2 type ice. However, a crossover to the crystal orientation factor is evident when S2-B test results are conpared with those obtained with S1-T and S1-B beams. Despite its finer-grained texture, the flexural strength of S2 ice tested with bottom in tension is appreciably weaker (on the order of 25-50%) than the much coarser-grained ice of either S1-T or S1-B beams.

In many S1-B tests, for example, failure occurred in an essentially single crystal mode, in a plane containing the c-axis and, hence, parallel to the "hard fail" plane of the ice crystal. The importance of the oriented crystal factor is further highlighted in the greater strength of beams of S1-B ice relative to S1-T beams, despite the fact that crystal size is appreciably smaller at the top of the ice sheet (in ice of S1-T beams). It is important to remember that temperature is not a factor here since the beams were isothermal.

Two beams of S2 ice were tested with sides in tension. Though too few to be statistically significant, the two beams tested much weaker than other isothermal beams; approximately 40% weaker than top in tension tests and 20% weaker than bottom in tension tests.

No attempt was made in the current series of tests to simulate fine-grained snow ice but, based

on results obtained with fine-grained, seeded (S2) ice when it is loaded to tensile failure, we could expect cold, simulated snow ice to test as strong or stronger than the cold, seeded topmost layer of S2 ice sheets.

Strain modulus measurements were made on a total of 169 beams used in isothermal tests. Given the error limits of the deflection measurements. the strain moduli (Fig. 24) show no systematic pattern of variation with respect to changes in either the temperature of the ice or the magnitude of the flexural strength. Average values ranged from 6-8 GPa or about 10-20% higher than modulus data obtained with cantilever and simply supported beams tested in parallel with cantilever beams. Lavrov (1971) reports strain moduli of 67,000 kg/cm² (6.6 GPa) for S1 ice tested at -3 to -4°C and 39,000 kg/cm² (3.8 GPa) for S2 ice. According to Lavrov, strain modulus (E_f) should increase approximately linearly with increasing flexural strength (S_f) of the ice, the actual rate of increase depending on the rate of loading. Using data from tests on beams of S2 ice. Lavrov obtained the analytical relationship

$$E_{\rm f} = 3000 \, S_{\rm f}$$

for load durations of 3 to 4 seconds. We observed no such relationship in our tests in which beams were loaded to failure in less than 1 second.

Temperature gradient effects

A second reason for conducting isothermal beam tests was to investigate the effects on flexural strength of temperature gradients in ice beams via comparisons with parallel simply supported beams of identical crystalline structure (either from the same ice sheet or from other ice sheets with the same structure). The two groups of beam tests differ only in their thermal state, the temperatures of isothermal beams remaining constant throughout their thickness whereas in parallel simply supported beams (those tested in conjunction with in-situ cantilever beams), only the top is at the prevailing ambient temperature, with the bottom of the beam being at or very close to 0°C. Accordingly, the only differences in the flexural characteristics of the two kinds of simply supported beams should be directly linked to the effect of temperature gradients in the parallel simply supported beams.

This effect can be a very substantial one, especially in a 10-cm-thick ice beam at an ambient air temperature of -19°C. As an inspection of Figure

Figure 25. Comparative relationships of flexural strengths of isothermal and parallel simply supported beams, demonstrating temperature gradient effects. Extrapolations of data to 0°C are indicated by dashed lines.

-10

Ambient Air Temperature (°C)

b. SI ice.

- 20

25 shows, the net effect of temperature gradients is to significantly reduce the strength of parallel simply supported beams, relative to isothermal beams tested at corresponding ambient air temperatures. This situation applies to both S1 and S2 ice types. In S2 ice, for example, the flexural strengths of parallel simply supported beams at the lower ambient air temperatures (larger temperature gradients) decreased to less than 55% of those of the isothermal beams. The effect is somewhat less in S1 ice beams, which tested about 30-35% weaker than their isothermal counter-

800

Figure 26. Strength difference ratios (flexural strengths of parallel simply supported beams relative to those of isothermal beams) versus ambient air temperature for (a) S2 ice and (b) S1 ice. Symbols T and B refer to top and bottom in tension tests respectively.

parts. Relationships between the two beam groups, plotted as a strength difference ratio versus ambient air temperature and ice type, are shown in Figure 26. It is also interesting to note in both Figures 25 and 26 that as ambient surface air temperatures converge towards 0°C so do the strengths of the corresponding sets of beams, e.g., ISO-T and PARA-T. This is to be expected since at 0°C both isothermal and parallel simply supported beams are now thermally equivalent. The only exception appears to be with ISO-B and PARA-B tests of S1 ice.

Notwithstanding, the fact that this convergence occurs in three out of four sets of tests lends credence to the testing procedures employed in the current series of tests and gives us confidence in the conclusion that the existence of a temperature gradient, regardless of the temperatue of the fiber in tension, is ultimately determining the strengths of parallel simply supported beams. However, as noted earlier in the discussion of the parallel beam test data, the ultimate strength of any particular set of parallel simply supported beams appears little affected by the *magnitude* of the temperature gradient. This seems a critical result since parallel beam tests come closest to approximating in-situ ice tests and are the ones most likely to yield realistic values of the effective flexural strength and modulus of floating freshwater ice sheets. In the cases of tests of structurally undegraded freshwater model ice sheets in the CRREL tank, S2 ice with top in tension would appear the strongest (1500 kPa) and S2 ice with bottom in tension (900 kPa) the weakest, with S1 ice values (1300 kPa) falling in between. This result would need to be modified for natural ice covers close to their melting points, because of the associated solar-modulated degrading and candling of the ice crystal structure. Such degrading of natural ice sheets (not a factor in indoor test tanks) is known to be a major cause of loss of flexural strength of temperate lake ice in spring (Weeks and Assur 1969, Gow et al. 1978).

Comparisons with other laboratory and field data

The results from small beam testing of freshwater model ice, in which the flexural strengths of simply supported isothermal beams were measured, include those of Lavrov (1971) and Timco and Frederking (1982). Timco and Frederking limited their measurements to S2 ice, which they tested at -10°C ambient air temperatures. Beams were tested in both push-down and pull-up modes. With push-down (top in tension tests) they obtained an average flexural strength of 2200 kPa, in good agreement with our averaged value of 2443 kPa at -10°C. Their value of 1770 kPa for bottom in tension (pull-up tests) also agrees reasonably well with our measurement of 1588 kPa. Lavrov (1971) tested both S1 and S2 ice and his results are reported in several tables and diagrams. Although the precise nature of load application is not given (Lavrov did not always distinguish between top and bottom in tension tests), indications are that results in his Table 38 (p. 114) were obtained with push-down (top in tension) tests. He lists mean values of 20.5 kg/cm² (2010 kPa) for S1 ice and 22.0 kg/cm² (2160 kPa) for S2 ice tested isothermally at -3 to -4°C. These data conform closely with our mean values of 1820 kPa for S1 ice and 2100 kPa for S2 ice tested with top in tension at -5°C.

Lavrov also furnished data on the temperature dependence (0 to -40°C) of the bending strength of S2 ice sheets grown in the laboratory. Though precise information on the nature of loading of the simply supported beams is lacking, we have assumed that both top and bottom in tension tests were performed. The part of his Figure 62 (p. 120) relating to freshwater ice tests is reproduced here (Fig. 27) to indicate the excellent agreement with

Figure 27. A comparison of data from several sources relating the flexural strength of isothermal simply supported beams to the temperature of the ice. All data based on small beam testing of S2 type ice sheets grown in laboratory test tanks.

data (averaged values of top and bottom in tension tests) obtained in the current series of tests.

The above comparisons were all made with reference to freshwater model ice tests conducted under conditions very similar to those in the CRREL tank. However, for completeness, a comparison with results from tests on simply supported ice beams from a number of diverse field locations would seem in order. In their review of the literature on the fracture of lake and sea ice, Weeks and Assur (1969) devoted some space to discussing flexural strength measurements of small beams. 'heir Figure 39 (p. 49) summarizes data from a variety of sources plotted in terms of the flexural trength versus temperature. A modified version of their Figure 39 is reproduced here as Figure 28. Although all four data sets vary widely, for reasons unknown, they do nevertheless indicate a trend towards increasing flexural strength with decreasing temperature, similar to results reported here for simply supported isothermal beams. Our data set (averaged on the basis of all tests on S1 and S2 ice) is also plotted in Figure 28. It perhaps conforms closest with results obtained by Frankenstein (1959) and Voitkovskii (1960). Reasons for the disparate nature of much of the flexural strength data are not clear, though Weeks and As-

Figure 28. Flexural strength data of isothermal beams from the current series of tests (dashed curve) compared with small beam tests on lake and river ice. Diagram is adapted from Weeks and Assur (1969). Data sources are: 1) Frankenstein (1959), 2) Voitkovskii (1960), 3) Wilson and Horeth (1948), Brown (1926) and Hitch (1959), 4) Butyagin (1966).

sur (1969) suggest it may be related to structural differences in the ice that was tested, details of which were either omitted or not sufficiently documented in the original reports. Structural differences could be either due to differences in original growth textures (S1 or S2 type ice) or related to thermal modification of the ice. This situation, in conjunction with results reported here on model freshwater ice, simply points up the need for researchers to diligently document the structural and thermal characteristics of the ice they are testing if realistic evaluations of the mechanical properties of ice sheets are to be obtained.

CONCLUSIONS

Previous investigations (Gow et al. 1978) of the flexural strength of large beams of lake ice showed that the strength of the ice depends appreciably on its temperature and crystalline composition. This work has now been extended to studies under controlled conditions in a refrigerated test tank where measurements were made on freshwater model ice sheets corresponding in structure to the two major ice types, S1 and S2, encountered in frozen lake water. S1 ice, produced by spontaneous nuclea-

tion of water at the freezing point, yields macrocrystalline ice sheets with predominantly vertical c-axes. S2 ice is produced when the surface of the water is seeded prior to freezing; structurally it consists of vertically elongated, columnar crystals with predominantly horizontal c-axes. Using a combination of beam tests, utilizing cantilever as well as simply supported beams, we have been successful in determining independently the effects of grain size, crystal orientation, tension fiber temperature and temperature gradient on the flexural characteristics of freshwater model ice. Results of major interest can be summarized as follows:

- 1. Comparative tests of in-situ cantilever beams and of the same beams tested immediately afterwards in three-point loading (so as to preserve insitu temperature profiles) showed that the sharply terminated roots of conventional cantilever beams activated a significant stress concentration and caused premature failure. This situation can be relieved and (in most cases) substantially eliminated by drilling 10-cm-radius holes at the roots of the beams. A further significant feature of these combination beam tests was the virtual non-dependence of flexural strength of the beams on the temperature of the fiber in tension. This situation applied to both top and bottom in tension tests over the temperature range -1 to -19°C; strengths did not exceed 1200 LPa for conventional cantilever beams or 1650 kPa for the simply supported beams.
- 2. The highest flexural strengths were measured on isothermal beams tested in the simply supported mode. Of these, fine-grained columnar ice at the top of S2 ice sheets generally tested the strongest at any given temperature, with an average flexural strength of 1650 kPa at -1°C, increasing to nearly 2600 kPa at -19°C. However, five- to sixfold increases in the cross-sectional diameter of crystals at the bottom of S2 ice sheets resulted in very substantial decreases in flexural strength of isothermal beams tested with bottom in tension. Simultaneously, c-axis orientation effects began to exercise their influence, such that beams of S1 ice composed of very much larger crystals with predominantly vertical c-axes became appreciably stronger in flexure than the coarsest-grained S2 ice having crystals with predominantly horizontal c-axes.
- 3. Tests on isothermal beams also afforded direct verification of the loss of flexural strength associated with temperature gradients in parallel simply supported beams (those tested in parallel with cantilever beams). This is an important result

because parallel simply supported beam tests, unlike those of conventional cantilever beams, are not affected by stress concentrations. Accordingly, they are the ones most likely to approximate true in-situ ice testing and should yield reasonably realistic values of the effective flexural strength of floating freshwater ice covers. However, cantilever beam tests are simpler to perform and, if suitably corrected for stress concentration effects on the basis of data from the parallel simply supported beam tests, should also yield reliable in-situ measurements of flexural strength. Correction factors of +30 to 35% were obtained for S1 ice with top and bottom in tension and for S2 ice with bottom in tension. For S2 ice with top in tension, a correction factor of approximately + 100% is indicated by our results.

- 4. Experiments with beam dimension changes, including increasing the width by 60% with respect to the thickness, and with varying the length to thickness ratio from 7:1 to 10: esulted in no significant changes in flexural strengths of beams.
- 5. Strain moduli, calculated from beam deflection measurements, showed little dependence on either the temperature of the ice or the magnitude of the flexural strength. Average values ranged from 5 to 7 GPa for cantilever and parallel simply supported beams and from 6 to 8 GPa for isothermal simply supported beams.

LITERATURE CITED

Brown, E. (1926) Experiments on the strength of ice. Report of the Joint Board of Engineering, St. Lawrence Waterway Project, p. 423-453.

Butyagin, I.P. (1966) Strength of ice and ice cover (in Russian). Izdatel'stvo Nauka Sibirskoe Otdelenie, Novosibirsk, p. 1-154.

Cherepanov, N.V. and A.V. Kamyshnikova (1973) Studies in Ice Physics and Ice Engineering (G.N. Yakovlev, Ed.). Translated from Russian by the Israel Program for Scientific Translation, Jerusalem, p. 1-170.

Frankenstein, G. (1959) Strength data on lake ice. USA Snow Ice and Permafrost Research Establishment (SIPRE), Technical Report 59.

Frederking, R.M.W. and G.W. Timco (1983) On measuring flexural properties of ice using cantilever beams. *Annals of Glaciology*, 4:58-65.

Frederking, R.M.W. and O.J. Svec (1985) Stress-relieving techniques for cantilever beams tests in an ice cover. *Cold Regions Science and Technology*, 11:247-253.

Gow, A.J. (1984) Crystalline structure of urea ice sheets used in modeling experiments in the CRREL test basin. USA Cold Regions Research and Engineering Laboratory, CRREL Report 84-24.

Gow, A.J. (1986) Orientation textures in ice sheets of quietly frozen lakes. *Journal of Crystal Growth*, 74:247-258.

Gow, A.J. and W.F. Weeks (1977) The internal structure of fast ice near Narwhal Island, Beaufort Sea, Alaska. USA Cold Regions Research and Engineering Laboratory, CRREL Report 77-29.

Gow, A.J. and H.T. Ueda (1984) Flexural strengths of fresh water model ice. In *Proceedings of 7ti. International Symposium on Ice, Hamburg, 1984.* International Association for Hydraulic Research, vol. 1, p. 73-82.

Gow, A.J., H.T. Ueda and J.A. Ricard (1978) Flexural strength of ice on temperate lakes: Comparative tests of large cantilever and simply supported beams. USA Cold Regions Research and Engineering Laboratory, CRREL Report 78-9.

Hitch, R.D. (1959) The flexural strength of clear lake ice. Snow, Ice and Permafrost Research Establishment, Technical Report 65.

Lavrov, V.V. (1971) Deformation and strength of ice. Translated from Russian for the National Science Foundation by the Israel Program for Scientific Translation, Jerusalem, p. 1-64.

Määttänen, M. (1976) On the flexural strength of

brackish water ice by in situ tests. In Proceedings of the Third International Conference on Port and Ocean Engineering Under Arctic Conditions (POAC '75), Fairbanks, Alaska, p. 349-359.

Michel, B. and R.O. Ramseler (1971) Classification of river and lake ice. Canadian Geotechnical Journal, 8:35-45.

Schwarz, J., R. Frederking, V. Gavrillo, I. Petrov, K. Hirayama, M. Mellor, P. Tryde and K. Vaudrey (1981) Standardized testing methods for measuring mechanical properties of ice. Cold Regions Science and Technology, 4:245-253.

Timeo, G.W. (1985) Flexural strength and fracture toughness of urea model ice. In *Proceedings* of 4th International Offshore Mechanics and Arctic Engineering Symposium, Dallas, Texas, vol. II, p. 199-208.

Timeo, G.W. and R.M.W. Frederking (1982) Comparative strengths of fresh water ice. Cold Regions Science and Technology, 6:21-27.

Voitkovskii, K.F. (1960) The mechanical properties of ice (in Russian). Izdatel'stvo Akademii Nauk SSSR, p. 1-100.

Weeks, W.F. and A. Assur (1969) Fracture of lake and sea ice. USA Cold Regions Research and Engineering Laboratory, Research Report 289.

Wilson, J.T. and J.M. Horeth (1948) Bending and shear tests on lake ice. *Transactions of the Geophysical Union*, 29:209-212.

APPENDIX A: FLEXURAL STRENGTH AND STRAIN MODULUS MEASUREMENTS OF CANTILEVER AND SIMPLY SUPPORTED BEAMS OF FRESHWATER MODEL ICE

Symbols and notations: T and B beside beam numbers denote top and bottom in tension tests, respectively; L, w and h denote the length, width and thickness of beams, respectively; P is the failure load, d is the beam deflection, S is the calculated flexural strength and E is the calculated strain modulus.

SHEET	1
(SEEDE	D)

M	MM	L(cm)	M(cm)	þ(æ)	P(kg)	q(ar)	S(kPa)	E(CPa)
1	T	103.8	10.5	11.8	18.0	.102	760	4.5
2	T T	104.1	10.5	11.8	19.4	.114	826	4.4
3	T	105.4	10.5	11.8	15.0	.089	643	4.5
	T	105.4	20.3	11.4	27.8		664	
4567	T	108.6	20.0	11.1	27.0	.117	696	4.2
6	T	105.4	19.4	10.8	25.5	.127	700	3.8
7	T	108.3	20.6	10.8	27.8	.140	734	3.8
8	T	108.6	19.7	10.8	24.0	.127	690	3.8

Max	Mar. 1, 1983 (-5°C) Centilever													
11 12	T T T	102.2 101.6 101.3 101.6	12.1 12.1 12.1 12.1	9.8 10.0 9.8 9.8	12.7 15.0 15.0 14.6	.097 .109 .112	657 742 746 750	4.8 4.7 4.8 4.3						

Mar. 1, 1983 (-5°C) Isothermal Simple Support													
BEAM		L(cs)	w(cm)	h(ca)	P(kg)	d(cm)	S(kPa)	E(GPe)					
14 15 16 17 18 19 20 21 22 23 24 25 26	BTTBBTBSSBTBT	101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	11.4 12.1 11.4 12.1 11.9 11.8 11.6 10.5 10.3 10.2 10.2	10.5 10.5 10.5 10.4 10.2 10.5 11.4 11.4 11.6 6.4	90.0 131.9 123.8 97.7 91.4 126.0 97.7 100.4 90.0 81.0 136.3 61.7 77.9		1064 1554 1498 1226 1116 1552 1216 937* 953* 1041 1561 1475 1979						

Ave. $S_T = 1629 \pm 197$; Ave. $S_B = 1190 \pm 159$

SHEET 1 (Cont.)

Max	. 4,							
BEA	M	L(ca)	w(cm)	h(cm)	P(kg)	d(ca)	S(kPa)	E(GPa)
27 28 29 30 31 32	TTBBBBT	111.8 111.8 111.8 109.2 110.5 111.8	11.3 11.1 11.6 11.8 11.4	10.3 10.3 10.3 10.3 10.1 10.0	10.9 11.0 13.6 11.3 12.1	.107 .112 .147 .114 .127	596 612 726 584 688 643	4.5 4.4 4.0 3.9 4.4 4.3

Ave. $9_T = 617 \pm 24$; Ave. $9_R = 666 \pm 24$ Ave. $9_T = 4.4 \pm 0.1$; Ave. $9_R = 4.1 \pm 0.3$

Max. 7,		1983 (-	17°C)	leother	Isothermal Simple Support								
33		101.6	10.0	10.4	94.5		1294						
34	T	101.6	11.1	10.1	144.0	.041	1883	7.9					
35	T	101.7	11.3	10.2	147.2	.053	1542+	5.9					
36		101.6	10.8	10.0	84.2	.028	1009	7.2					
37	T	101.6	11.4	10.1	147.2	.051	1901	6.3					
36	T	101.6	11.1	10.2	147.2	.036	1687	8.4					
39	В	101.6	11.5	9.9	95.9	.028	1342	7.9					

Ave. $S_T = 1824 \pm 119$; Ave. $S_B = 1242 \pm 134$ Ave. $S_T = 7.6 \pm 1.1$; Ave. $S_B = 7.6 \pm 0.5$

+Off center break exceeding 10 cm.

SHEET 2 (SEEDED)

BEA	M	L(cm)	M(CB)	h(cm)	P(kg)	d(cm)	S(kPa)	E(GPa)
1		RECORDI	ER MALFU	CTION				
1 2	T	97.0	10.4	11.3	19.3	.117	828	3.9
3	T	97.0	10.4	11.2	14.2	.089	626	3.9
4	T	96.7	10.0	11.0	11.3	.074	529	4.1
5	T	BROKE	AT CRACK					
3 4 5 6 7 8	T	95.7	11.1	10.9	14.4	.099	613	3.5
7	T	95.3	10.3	10.8	12.5	.097	579	3.4
В	T	95.3	9.3	10.6	14.4	.125	771	3.5
9	T	96.5	10.2	10.9	14.0	.112	655	3.3
10	В	BROKEN						
11	8	BROKEN						
12	B	94.5	10.9	11.0	14.3	.066	616	4.9
13	_	BROKEN						
14	В	95.5	10.5	11.0	16.0	.079	696	5.0
15	В	95.0	10.5	11.0	16.8	.086	727	4.7
16	B	95.5	9.2	10.9	15.4	.089	779	5.0
17		96.0	9.5	10.8	14.6	.084	731	5.0
iá	Ť	96.0	11.5	10.8	17.6	.089	730	4.7
	•	70.0	1143		17.0			707

Parallel Simple Support

	- •	• • •					
BEAM	L(cm)	w(œ)	h(ca)	P(kg)	d(cm)	S(kPa)	E(GPa)
1 2 3	Used 5	or leoth	ermal T	ests, Ma	r. 29		
3 4 T 5	71.1	10.1	10.8	135.0	-	1229	
6 T 7 T 8 T	71.1 71.1 71.1	11.1 9.9 10.0	10.9 10.6 10.5	156.6 165.2 108.9		1272 1584 712 +	
• •						• • • •	

Ave. 9r = 1361 ±194

Beams 11, 12 and 13 used for Isothermal Tests, Mar. 29 Other beams not tested.

Maz .	29,	1983	(-5°C)	Isothermal	Simple	Support
-------	-----	------	--------	------------	--------	---------

1	T	101.6	10.4	11.1	135.0	.053	1629	4.6
2	T	71.1	10.0	11.0	184.5		1630	
3	Ť	71.1	10.0	11.0	132.8		854+	
11	B	71.1	9.8	10.6	135.0	.023	1316	4.4
12	В	71.1	10.0	10.1	152.1		1278	
13	B	71.1	9.8	10.6	150.3	.018	1380	6.3

Ave. $S_T = 1630 \pm 1$; Ave. $S_B = 1324 \pm 52$ Ave. $B_T = 4.6$; Ave. $B_B = 5.4 \pm 1.3$

+Off center break exceeding 10cm

	1983 (-5	°C) Cant	ilever				i	Paral	lei	Simple	Support	;				
BEAM	L(ca)	w(ca)	h(ca)	P(kg)	d(ca)	8(kPa)	B(GPa)	DEM	1	(ca)	w(æ)	h(æ)	P(kg)	d(cs)	S(kPa)	E((Pa)
19 20 B	BRUKEN 105.5	11.5	11.8	17.9	.173	711	2.5	19 I 20 I		101.6 101.6	11.5	12.1 12.2	104.4 117.5	.015	968 1092	8.8 1
21 B 22 B	107.0 107.0	11.2	11.7	17.6 18.2	.086	723 708	5.5 5.6	21 i)	01.6 101.6	11.0	12.0 12.6	113.0	.013	1070 1024	11.8 1
23 B 24 B	107.5	11.0	12.0 12.0	19.0 17.4	.097	757 685	5.0	23	1	MOKEN MOKEN						
25 T 26 T	109.0 109.5	11.2	12.0 12.0	17.6 20.9	.071	700 805	6.5	25 1 26 1	r 1	101.6	11.6	12.3 12.3	217.4 185.0	.028 .038	1906 1604	9.2 5.7
27 T 28 T	108.5 109.0	12.2	12.0 12.0	20.1 22.8	.097	728 859	4.9		r	101.6 MOKEN	11.9	12.1	217.4	.053	1921	5.0
29 T 30 T	109.0	11.5	11.8	19.5 19.0	.104	798 786	5.0	29 30	1							
•	- 776 ± 5					,,,,	310 [±179; A	/e. Sa =	1043 #4	7		
Ave. BT	= 5.2 ±0. experimen	8; Ave.	E - 4.0	5 21.3						- 6.7						
Traulty .	an har ruar	LAL LECT	aredon ,													
Mar. 31,	1983 (-1	°C) Caro	tilever							. .	Support		54. 1		00.D.)	#(CD-)
BEAM	L(cn)	n(ce)	h(ca)	P(kg)	d(ca)	S(kPa)	E(CPa)			L(ca)	w(cm)	h(cs)	P(kg)		S(kPa)	E(GPa)
31 T 32 T	110.0 109.0	11.5 11.5	12.0 12.0	19.5 14.9		761 5 78	:	31	T	101.6	11.7	12.3	139.5	Apr. 1	850 +	
33 T	110.0	12.0	11.9	16.1		619		33	1	101 .6 101 .6	11.8	11.9 11.8	147.2 149.9		1373 1462	
34 T 35 T	110.0 110.0	11.8 11.5	11.8 11.4	16.3 13.6		640 589		35 35	Ť	101.6	11.6	11.9	157.5		1490	
36 T	109.5	11.5	11.5	15.9		672		36 '	T	101.6	12.1 11.8	11.9 11.8	165.2 161.1		1497 1525	
37 T 36 T	109.5 109.5	12.1 11.4	11.7 11.7	15.1 12.7		588 528		37 '	•	101.6 Used ir			m Teets	Apr. 1	1363	
39 B	108.5	11.8	11.7	17.8		702		39		•		••	••		733	
40 B	108.5	11.9	11.5	18.9		767 814				101.6 101.5	12.2 11.5	11.4 11.4	71.1 84.2		733 916	
41 B 42 B	109.0 111.0	12.1 10.7	11.2 11.0	19.3 12.7		639		42	B	101.6	11.2	11.1	85.5		907	
43 B	111.0	12.8	11.0	14.2		597				101.6	11.9	11.1 	70.7 - Teere	A 1	827	
4A B 45 B	.11.0	11.5 10.5	11.0 10.2	12.7 13.2		594 709		45		need "	I TROUIS	H	m Tests,	nter i		
•-	111.0					,,,,			_			_				
	- 622 ±7 ter break	_						AVW.	· ST	- 1-07	±58; Av	e. sg -				
Apr. 1,	1983 (-1	080\ 1	thermul	Simple S	Support			Pere	llel	Simple	Suppor	t				E(GPa)
		n c) rec						BEAM								87 (3798.)
BEAM	L(ca)	A(GB)	h(cm)	P(kg)	d(ca)	S(kPa)	E(GPB)	DEST	l	L(cm)	w(cm)	h(ca)	P(kg)	d(cn)	S(kPa)	2(2.2)
31 T	L(ca)	w(cm)	h(cm) 12.4	217.4	d(cm)	1180 +			l	L(cm)	w(ca)	h(an)	P(kg)	d(ca)	S(kPa)	
	L(cn)	w(cm)	h(cm)	217.4 148.5 131.9	.058	1180 ± 1049 ± 1357	3.3		l	L(cm)	w(ca)	h(an)	P(kg)	d(ca)	S(kPa)	
31 T 38 T	L(cm) 101.6 101.6 101.6 101.6	w(cm) 11.4 11.8	h(cm) 12.4 11.5	217.4 148.5		1180 ±	•		1	L(ca)	w(cm)	h(ca)	P(kg)	d(ca)	S(kPe)	
31 T 38 T 39 B 44 B 45 T Ave. S _T	L(cm) 101.6 101.6 101.6 101.6 101.6 - 1495; - 4.4;	w(cm) 11.4 11.8 11.5 11.5 11.3 Ave. Sg	h(cm) 12.4 11.5 11.5 10.7 10.6 = 1273	217.4 148.5 131.9 106.7 121.5	.058	1180 4 1049 4 1357 1190	3.3 4.2			L(cm)	w(ca)	h(ca)	P(kg)	d(ca)	S(kPa)	
31 T 38 T 39 B 44 B 45 T Ave. S _T	L(cm) 101.6 101.6 101.6 101.6	w(cm) 11.4 11.8 11.5 11.5 11.3 Ave. Sg Ave. Eg	h(cm) 12.4 11.5 11.5 10.7 10.6 = 1273	217.4 148.5 131.9 106.7 121.5 1118	.058	1180 4 1049 4 1357 1190 1495	3.3 4.2						_	d(ca)		
31 T 38 T 39 B 44 B 45 T Ave. ST Ave. Br Apr. 1,	L(cm) 101.6 101.6 101.6 101.6 101.6 - 1495; - 4.4; 1983 (-1	w(cm) 11.4 11.8 11.5 11.5 11.3 Ave. Sg Ave. Eg	h(cm) 12.4 11.5 11.5 10.7 10.6 = 1273 = 3.8	217.4 148.5 131.9 106.7 121.5 1118 10.6	.058	1180 4 1049 4 1357 1190 1495	3.3 4.2	46	T	101.6	11.8 11.7	h(cm)	900.0 210.2	d(ca)	2833 + 1985	
31 T 38 T 39 B 44 B 45 T Ave. ST Ave. Br Apr. 1,	L(cm) 101.6 101.6 101.6 101.6 101.6 - 1495; - 4.4; 1983 (-1	v(cm) 11.4 11.8 11.5 11.5 11.3 Ave. Sg Ave. Eg 0°C) Cm 11.8 11.5	h(cm) 12.4 11.5 11.5 10.7 10.6 = 1273	217.4 148.5 131.9 106.7 121.5 1118	.058	1180 4 1049 4 1357 1190 1495	3.3 4.2 4.4	46 47 48	TTT	101.6 101.6 101.6	11.8 11.7 12.0	11.7 11.8 11.5	300.0 210.2 161.1	,112	2833 + 1985 1578	2.0
31 T 38 T 39 B 44 B 45 T Ave. S _T Ave. B _T 46 T 48 T 49 T	L(cm) 101.6 101.6 101.6 101.6 101.6 - 1495; - 4.4; 1983 (-1 110.0 110.0 110.0	v(cm) 11.4 11.8 11.5 11.5 11.3 Ave. Sg Ave. Eg 0°C) Cm 11.8 11.5 11.5 11.9	h(cm) 12.4 11.5 11.5 10.7 10.6 = 1273: = 3.8: ntilever 11.2 11.0 11.0	217.4 148.5 131.9 106.7 121.5 kt 18 10.6	.058 .046 .053	1180 4 1049 4 1357 1190 1495	3.3 4.2 4.4	46 47 48 49	TTTT	101.6 101.6 101.6 101.6	11.8 11.7 12.0 11.4	11.7 11.8 11.5 11.5	300.0 210.2 161.1 142.7	,112 ,097	2833 + 1985	
31 T 38 T 39 B 44 B 45 T Ave. S _T Ave. B _T Apr. 1, 46 T 47 T 48 T 50 T	L(cm) 101.6 101.6 101.6 101.6 101.6 - 1495; - 4.4; 1983 (-1 110.0 110.0 110.0 110.0	w(cm) 11.4 11.8 11.5 11.5 11.3 Ave. Sg Ave. Eg 0°C) Cm 11.8 11.5 11.5	h(cm) 12.4 11.5 11.5 10.7 10.6 = 1273 = 3.8 11.2 11.0 11.0	217.4 148.5 131.9 106.7 121.5 1118 10.6	.058 .046 .053	1180 4 1049 1 1357 1190 1495	3.3 4.2 4.4	46 47 48	TTT	101.6 101.6 101.6	11.8 11.7 12.0	11.7 11.8 11.5	300.0 210.2 161.1 142.7 183.6 180.0	.112 .097 .053 .102	2833 + 1985 1578 1472 1688 1417	2.0 2.2 4.5 2.3
31 T 38 T 39 B 44 B 45 T Ave. ST Ave. Br Apr. 1, 46 T 47 T 48 T 49 T 50 T	L(cm) 101.6 101.6 101.6 101.6 101.6 - 1495; - 4.4; 1983 (-1 110.0 110.0 110.0 110.0 110.5 BROKEN	w(cm) 11.4 11.8 11.5 11.5 11.3 Ave. Sg Ave. Eg 0°C) Cm 11.8 11.5 11.5 11.9	h(cm) 12.4 11.5 11.5 10.7 10.6 = 1273: = 3.8: ntilever 11.2 11.0 11.0 11.3	217.4 148.5 131.9 106.7 121.5 kt 18 10.6	.058 .046 .053	1180 4 1049 4 1357 1190 1495 727 756 808 747 652 682	3.3 4.2 4.4 5.2	46 47 48 49 50 51 52	TTTTTT	101.6 101.6 101.6 101.6 101.6 101.6	11.8 11.7 12.0 11.4 12.1 11.5	11.7 11.8 11.5 11.5 11.8 11.9	300.0 210.2 161.1 142.7 183.6 180.0 225.0	.112 .097 .053 .102	2833 + 1985 1578 1472 1688 1417 1391 +	2.0 2.2 4.5 2.3 4.0
31 T 38 T 39 B 44 B 45 T Ave. S _T Ave. B _T 46 T 47 T 48 T 50 T 51 T 52 T	L(cm) 101.6 101.6 101.6 101.6 101.6 - 1495; - 4.4; 1983 (-1 110.0 110.0 110.0 110.5 BROKEN 110.5	w(cm) 11.4 11.8 11.5 11.5 11.3 Ave. Sg Ave. Eg 0°C) Cm 11.8 11.5 11.9 11.3	h(cm) 12.4 11.5 11.5 10.7 10.6 = 1273 = 3.8 11.0 11.0 11.0 11.3 11.8 11.5	217.4 148.5 131.9 106.7 121.5 kt 18 t0.6	.058 .046 .053	1180 4 1049 4 1357 1190 1495 727 756 808 747 652 682 772	3.3 4.2 4.4	46 47 48 49 50 51 52 53	TTTTTTT	101.6 101.6 101.6 101.6 101.6 101.6	11.8 11.7 12.0 11.4 12.1 11.5 12.0	11.7 11.8 11.5 11.5 11.8 11.9 12.2	300.0 210.2 161.1 142.7 183.6 180.0	.112 .097 .053 .102	2833 + 1985 1578 1472 1688 1417	2.0 2.2 4.5 2.3 4.0 3.7 2.1
31 T 38 T 39 B 44 B 45 T Ave. S _T Ave. B _T Apr. 1, 46 T 47 T 48 T 50 T 51 T 53 T 54 B	L(cm) 101.6 101.6 101.6 101.6 101.6 - 1495; - 4.4; 1983 (-1 110.0 110.0 110.0 110.5 BROKEN 110.5 109.5	v(cm) 11.4 11.8 11.5 11.5 11.3 Ave. Sg Ave. Eg 0°C) Cm 11.8 11.5 11.5 11.9 11.3	h(cm) 12.4 11.5 11.5 10.7 10.6 = 1273: = 3.8: ntilever 11.2 11.0 11.0 11.3 11.8 11.5 12.2	217.4 148.5 131.9 106.7 121.5 kt 18 t0.6	.058 .046 .053	1180 4 1049 4 1357 1190 1495 727 756 808 747 652 682	3.3 4.2 4.4 5.2	46 47 48 49 50 51 52 53 55	TTTTTTTBB	101.6 101.6 101.6 101.6 101.6 101.6	11.8 11.7 12.0 11.4 12.1 11.5 12.0 11.9	11.7 11.8 11.5 11.9 12.2 12.3 12.0	300.0 210.2 161.1 142.7 183.6 180.0 225.0 131.4 108.9	.112 .097 .053 .102 .066 .041	2833 + 1985 1578 1472 1688 1417 1391 + 988 950 970	2.0 2.2 4.5 2.3 4.0 3.7 2.1
31 T 38 T 39 B 44 B 45 T Ave. ST Ave. Br Apr. 1, 46 T 47 T 48 T 50 T 51 T 52 T 54 B 55 B	L(cm) 101.6 101.6 101.6 101.6 101.6 - 1495; - 4.4; 1983 (-1 110.0 110.0 110.0 110.5 BROKEN 110.5	w(cm) 11.4 11.8 11.5 11.5 11.3 Ave. Sg Ave. Eg 0°C) Cm 11.8 11.5 11.9 11.3 11.9 11.6 11.7 11.6	h(cm) 12.4 11.5 11.5 10.7 10.6 = 1273 : = 3.8 : ntilever 11.2 11.0 11.0 11.3 11.8 11.5 12.2	217.4 148.5 131.9 106.7 121.5 kt18 k0.6	.058 .046 .053	1180 4 1049 4 1357 1190 1495 727 756 808 747 652 682 772 573 699	3.3 4.2 4.4 5.2 5.1	46 47 48 49 50 51 52 53 55	TTTTTTTBBB	101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	11.8 11.7 12.0 11.4 12.1 11.5 12.0 11.9 11.8	11.7 11.8 11.5 11.5 11.9 12.2 12.3 12.0 12.2	300.0 210.2 161.1 142.6 180.0 225.0 131.4 108.9 113.9	.112 .097 .053 .102 .066 .041 .064 .038	2833 + 1985 1578 1472 1688 1417 1391 + 988 950 970 728	2.0 2.2 4.5 2.3 4.0 3.7 2.1 3.0 2.6
31 T 38 T 39 B 44 B 45 T Ave. S _T Ave. B _T 46 T 47 T 48 T 50 T 51 T 53 T 54 B 55 B	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 110.0 110.0 110.0 110.0 110.5 110.5 109.5 109.5 100.5 100.5 100.5	w(cm) 11.4 11.8 11.5 11.5 11.3 Ave. Sg Ave. Eg 0°C) Cm 11.8 11.5 11.9 11.6 11.7 11.6	h(cm) 12.4 11.5 11.5 10.7 10.6 = 1273 = 3.8 11.0 11.0 11.0 11.3 11.8 11.5 12.2 12.2	217.4 148.5 131.9 106.7 121.5 ki 18 to.6	.058 .046 .053	1180 4 1049 4 1357 1190 1495 727 756 808 747 652 682 772 573 699 789	3.3 4.2 4.4 5.2	46 47 48 49 50 51 52 53 54 55 55	TTTTTTTBBBB	101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	11.8 11.7 12.0 11.4 12.1 11.5 12.0 11.9 11.8 12.0	11.7 11.8 11.5 11.5 11.9 12.2 12.3 12.0 12.2	300.0 210.2 161.1 142.7 183.6 180.0 225.0 131.4 108.9	.112 .097 .053 .102 .066 .041 .064 .038	2833 + 1985 1578 1472 1688 1417 1391 + 988 950 970	2.0 2.2 4.5 2.3 4.0 3.7 2.1 3.0 2.6 3.1
31 T 38 T 39 B 44 B 45 T Ave. S _T Ave. B _T Apr. 1, 46 T 47 T 48 T 50 T 51 T 52 T 53 T 54 B 55 B 56 B	L(cm) 101.6 101.6 101.6 101.6 101.6 - 1495; - 4.4; 1983 (-1 110.0 110.0 110.5 BROKEN 110.5 109.5 108.5 BROKEN 108.5 109.5	11.4 11.8 11.5 11.5 11.3 Ave. Sg Ave. Eg 0°C) Cm 11.8 11.5 11.5 11.5 11.5 11.5 11.5 11.6 11.7 11.6	h(cm) 12.4 11.5 11.5 11.7 10.6 = 1273: = 3.8: ntilever 11.2 11.0 11.0 11.3 11.8 11.5 12.2 12.2	217.4 148.5 131.9 106.7 121.5 kt 18 t0.6 16.7 16.3 17.4 16.7 14.6 17.4 19.9 15.5 18.9	.058 .046 .053	1180 4 1049 4 1357 1190 1495 727 756 808 747 652 682 772 573 699	3.3 4.2 4.4 5.2 5.1	46 47 48 49 50 51 52 53 55	TTTTTTTBBBBBBB	101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	11.8 11.7 12.0 11.4 12.1 11.5 12.0 11.9 11.8 12.0 12.1 11.9	11.7 11.8 11.5 11.9 12.2 12.3 12.0 12.2 12.3	300.0 210.2 161.1 142.7 183.6 180.0 225.0 131.4 108.9 113.9 85.5 117.6 103.5	.112 .097 .053 .102 .064 .041 .046 .038	2833 + 1985 1578 1472 1688 1417 1391 + 988 950 970 728 973 980 890	2.0 2.2 4.5 2.3 4.0 3.7 2.1 3.0 2.6 3.1 2.6
31 T 38 T 39 B 44 B 45 T Ave. S _T Ave. B _T 46 T 47 T 48 T 50 T 51 T 53 T 54 B 55 B	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 110.0 110.0 110.0 110.0 110.0 110.5 BROKEN 110.5 108.5 108.5 108.5	w(cm) 11.4 11.8 11.5 11.5 11.3 Ave. Sg Ave. Eg 0°C) Cm 11.8 11.5 11.9 11.3 11.9 11.6 11.7 11.6 11.7	h(cm) 12.4 11.5 11.5 10.7 10.6 = 1273 : = 3.8 : ntilever 11.2 11.0 11.0 11.3 11.8 11.5 12.2 12.2 12.0 12.1	217.4 148.5 131.9 106.7 121.5 kt 18 kt).6	.058 .046 .053	1180 4 1049 1 1357 1190 1495 727 756 808 747 652 682 777 573 699 789 789 7757	3.3 4.2 4.4 5.2 5.1	46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	TITTTTTTBBBBBBBB	101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	11.8 11.7 12.0 11.4 12.1 11.5 12.0 11.9 11.8 12.0 12.1 11.1	11.7 11.8 11.5 11.9 12.2 12.3 12.0 12.2 12.3 12.6 12.3	300.0 210.2 161.1 142.7 183.6 180.0 225.0 131.4 108.9 113.9 85.5 117.0 111.6	.112 .097 .053 .102 .066 .041 .046 .038 .041	2833 + 1985 1578 1472 1688 1417 1391 + 988 950 970 728 973 980 890 1126	2.0 2.2 4.5 2.3 4.0 3.7 2.1 3.0 2.6 3.1 2.6 3.3 2.5
31 T 38 T 39 B 44 B 45 T Ave. ST Ave. BT Apr. 1, 46 T 47 T 48 T 50 T 51 T 52 T 53 B 55 B 56 B	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 110.0 110.0 110.0 110.0 110.5 BROKEN 110.5 108.5 108.5 108.5	w(cm) 11.4 11.8 11.5 11.5 11.3 Ave. Sg Ave. Eg 0°C) Cm 11.8 11.5 11.9 11.6 11.7 11.6 11.7	h(cm) 12.4 11.5 11.5 11.7 10.6 = 1273 : = 3.8 : ntilever 11.2 11.0 11.0 11.3 11.8 11.5 12.2 12.2	217.4 148.5 131.9 106.7 121.5 kt18 t0.6 16.7 16.3 17.4 16.7 14.6 17.4 19.9 20.8 19.9 20.8	.058 .046 .053	1180 4 1049 4 1357 1190 1495 727 756 808 747 652 682 772 573 699 789 752 762	3.3 4.2 4.4 5.2 5.1	46 47 48 50 51 52 53 54 55 56 57 58	TTTTTTTBBBBBBB	101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	11.8 11.7 12.0 11.4 12.1 11.5 12.0 11.9 11.8 12.0 12.1 11.9	11.7 11.8 11.5 11.9 12.2 12.3 12.0 12.2 12.3	300.0 210.2 161.1 142.7 183.6 180.0 225.0 131.4 108.9 113.9 85.5 117.6 103.5	.112 .097 .053 .102 .064 .041 .046 .038	2833 + 1985 1578 1472 1688 1417 1391 + 988 950 970 728 973 980 890	2.0 2.2 4.5 2.3 4.0 3.7 2.1 3.0 2.6 3.1 2.6

3000 (Cont.)

Apr. 4	Apr. 4, 1983 (-19°C) Cantilever								Perallel Simple Support						
BEAM	L(cm)	w(ca)	h(ca)	P()	d(ca)	8(kPa)	E(GPa)		L(m)	w(ca)	h(an)	P(kg)	d(cm)	S(kPa)	E(Cha)
63 TTTT TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	110.0 110.5 8NOICEN 108.5 NECUNDED 111.0 109.5 110.0 110.2 110.0 109.8 110.0 110.5 110.0	12.4 11.2 12.2 12.0 12.0 11.8 11.9 12.0 11.6 11.8	13.0 12.9 12.7 13.3 13.1 13.3 13.1 13.0 12.8 12.7 12.5	19.9 23.6 10.4 30.7 24.6 30.2 19.4 23.6 24.1 21.3 16.1 22.7 21.3 19.4	.091	508 7777 352 + 957 865 1010 366 742 748 674 512 772 726 660	5.0 5.0	63 664 655 666 67 T T T T T T T T T T T T T T T T T T T	101.6 101.6 101.6 101.6 101.6 201.6 101.6 101.6 101.6 101.6	11.9 11.6 12.0 11.8 11.8 11.8 11.9 11.8	13.2 13.2 13.3 13.0 13.4 13.2 13.0 12.6 12.1 12.4	161.1 255.2 172.4 225.0 112.5 108.0 90.0 93.2 100.4 91.4 104.9		1213 1889 1308 1739 852 818 728 726 684 810 935	
	r = 859 ±13		28 - 00	1 <u>17</u> 0				AVE. 5	1221	EJK/; A	A4. 28.	- 822 ±77			

Ave. $S_{T} = 859 \pm 131$; Ave. $S_{B} = 680 \pm 90$ Ave. $S_{B} = 5.0 \pm 0$

+Off center break exceeding 10 cm.

SHEET 3 (UNSEEDED)

Ąpe	Apr. 11, 1983 (-5°C) Cantilever							Perallel Simple Support								
BEA	M	L(ca)	w(cm)	h(cm)	P(kg)	d(ca)	S(kPa)	E(GPa)	BEAM	L(ca)	w(cm)	h(cm)	P(kg)	d(ca)	S(kPa)	E(GPa)
1 2 3 4 5 6 7 8 9 10 11 12 13 14	TTTTTTTBBBBBB	108.4 109.0 110.0 110.0 109.5 109.0 108.0 108.0 108.0 108.0 108.0	10.2 10.5 9.7 10.0 10.5 10.0 11.1 10.5 10.3 10.0 10.9 9.6 10.2	9.5 9.5 9.6 9.8 9.7 9.7 9.6 9.8 10.0 10.0	15.9 12.5 11.2 14.6 11.5 12.9 13.8 11.9 20.8 15.1 18.0 24.2	.127 .114 .102 .127 .108 .111 .102 .165 .124 .102 .184 .130	1100 843 879 1022 736 877 848 803 1365 975 1140 1410 1094	7.2 7.6 6.8 5.6 6.2 6.3 6.3 6.5 8.7 6.5	1 2 3 4 5 6 7 7 7 8 9 10 B B 11 2 B B 11 4 B	101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	10.2 9.9 9.7 10.0 10.5 10.8 11.0 10.1 R MALFUR 10.0 10.7 10.4	9.5 9.7 9.9 10.0 9.9 10.0 10.1 ICTION 10.6 10.5 10.5	79.5 78.0 75.0 85.5 75.0 84.0 90.0 70.5 88.5 82.5 106.5	.043 .040 .051 .043 .040 .044 .049 .048 .019 .032 .033 .035	1324 1253 1249 1068 1262 1107 1188 1270 919 1187 993 1274	5.4 5.5 4.6 5.4 4.1 4.6 8.0 5.7 5.3 6.7
15 16 Ave Ave Ape	. Sr . Br . Br . 12,	108.0 108.5 = 888 ±1 = 6.6 ±0 1983 (-	9.7 10.3 18; Ave. 0.6; Ave. -1°C) Iso 10.8	9.9 10.0 Sg = 116 Sg = 6. othermal 9.5	19.4 16.6 55 ±169 .8 ±0.9 Simple 75.0	.140 .111 Support	1295 1026	7.3	15 B 16 B Ave. S	101.6 101.0 = 1215 = 4.7	10.5 10.4 ± 88; As	11.0 11.1 m. Sp =	96.0 96.0 1114 ±1	.038 25	1192 1160	4.5
18 19 20 21 22	T B B T	101.6 101.6 101.6 101.6 81.3	11.2 11.4 10.0 10.5 10.6	9.3 9.3 9.4 9.6	70.5 88.5 67.5 99.0 97.5	.033 .048 .041 .054 .033	1162 1389 1229 1622 1209	6.1 5.2 5.3 5.4 4.2								

Ave. $S_T = 1186 \pm 33$; Ave. $S_B = 1366 \pm 187$ Ave. $S_T = 5.2 \pm 1.3$; Ave. $S_B = 5.1 \pm 0.5$

SHEET 3 (Cont.) (UNSEEDED)

Parallel Simple Support

Apr. 12, 1983 (-1°C) Centilever

BEAM	L(cm)	w(cm)	h(ca)	P(kg)	d(ca)	S(kPa)	E(GPa)	BEAM	L(ca)	A(ca)	h(cm)	P(kg)	d(cm)	S(kPa)	E(GPa)
23 T	107.0	10.6	10.5	18.9	.108	1023	6.9	23 T	101.6	10.1	11.0	81.0	.024	1053	6.5
24 T	102.0	10.5	10.5	18.9	.102	980	6.3	24 T	101.6	10.8	10.9	93.0	.032	1147	5.3
25 T	105.5	10.9	10.6	18.9	.098	958	4.5	25 T	101.6	10.8	10.9	90.0	.035	988	4.7
26 T	106.0	11.1	10.7	16.1		788		26 T	101.6	11.3	10.9	96.0	.030	1026	5.6
27 T	105.5	10.5	10.6	16.1	.098	843	4.0	27 B	101.6	10.9	11.0	114.0	.041	1227	4.9
28 T	108.0	10.5	10.3	16.7	.102	949	4.9	28 T	101.6	10.3	10.8	77. 9	.033	1034	4.1
29 T	102.5	10.3	10.4	16.3	.105	880	5.7	29 T	101.6	10.7	10.6	90.0	•030	1052	6.1
30 T	105.5	11.6	10.3	24.6	. 158	1239	5.7	30 T	101.6	11.7	10.5	100.5	.029	1177	6.6
31 B	104.5	10.0	10.0	17.8	.124	1092	6.4	31 B	101.6	10.0	10.5	72.0	.037	1042	4.3
32 B	102.0	9.6	9.9	17.5	.146	1185	5.4	32 B	101.6	10.3	10.0	78.0	.032	1045	6.1
33 B	104.5	10.7	9.6	16.6	.137	1031	5.7	33 B	101.6	10.5	9.9	84.0	.040	1290	5.3
34 B	105.0	9.5	9.9	15.6	.152	1034	5.1	34 B	101.6	10.2	9.6	84.0	.043	1407*	5.6
35	BROKEN							35	BROKEN						
36 B	106.0	9.9	9.2	12.3	.130	914	5.7	36 B	101.6	10.1	_9.5	54.0	.027	871	5.9
37 B	104.5	10.2	9.1	15.3	.156	1114	5.7	37 B	101.6	10.1	9.0	70.5	.046	1098+	5.3
38 B	88.0	10.5	9.1	15.3		911		38 B	81.3	10.5	9,2	78.0	.032	922	3.9
	050 44		- 10	40.4400				A 0	1000	.		1000 41			
	= 958 ±1: = 5.4 ±1							AVE. ST	= 1008	±0.9 A	lve.SB = lve.EB =	5.1 ±0.			
me, ol	J.7 -1	o, ave.	- 9	., -0,-				we. nl	- 3.0	-017, 1		311 -0	••		
Apr. 13	, 1983 (-	10°C) I	otherna.	l Simple	Suppor	t									
39 B	101 6	11 2	10.2	122 0	V30	11674	7.0								
	101.6	11.2	10.2	123.0	.038	1151+	7.0								
	101.6	10.9	9.8	130.5	.056	1786	5.9								
41 T	101.6	11.1	9.4	108.0	.057	1737	5.2								
42 B	101.6	11.3	9.4	123.0	.064	1914	5.3								
43 B	101.6	11.4	10.2	126.0	.045	1671	6.0								
44 T	81.3	12.0	10.2	172.5	.032	1695	5.6								
Aus Co	- 1739 ±	46. Au	Sn = 1	702 +172	,										
	= 5.6 ±														
*Sideway		-, ,	• —	JV, -012											
	ya 1686 nter br ea l	- avoaadi	no 10 or												
TUII CE	urer prem	· exceed	ing io d	ш.											
	4000 /							B							
Apr. 13	, 1983 (-	10°C) Cm	ntilever					Paralle	l Simple	Suppor	rt				
•					d(cm)	S(kPa)	R(GPa)					P(ko)	d(m)	S(kPn)	E((Pa)
Apr. 13 BEAM	, 1983 (- L(cm)	10°C) Ces w(cns)	htilever h(cm)	P(kg)	d(cm)	S(kPa)	E(GPa)	Paralle BEAM	l Simple L(cm)	e Suppor w(cm)	rt h(cm)	P(kg)	d(cm)	S(kPa)	E((Pa)
BEAM	L(cm)				d(cm)	S(kPa)	E(GPa)	BEAM				P(kg)	d(cm)	S(kPa)	E(CPa)
BEAM 45	L(cm) BROKEN	w(cnt)	h(cm)	P(kg)				BEAM 45	L(ca)	w(cm)	h(cm)				
BEAM 45 46 T	L(cm) HROKEN 108.0	w(cm)	h(cm)	P(kg)	.130	952	5.0	BEAM 45 46 T	L(cm)	w(cm)	h(cm)	88.5	.029	1348	8.7
BEAM 45 46 T 47 T	L(cm) BROKEN 108.0 105.0	w(cm)	h(cm) 9.9 9.6	P(kg)	.130	952 786	5.0 5.9	BEAM 45 46 T 47 T	L(cm) 101.6 101.6	w(cm)	h(cm) 9.3 9.8	88.5 76.5	.029	1348 1080	8.7 5.7
BEAM 45 46 T 47 T 48 T	L(cm) HROKEN 108.0 105.0 106.0	w(cm) 11.2 11.6 11.0	9.9 9.6 9.7	P(kg) 16.5 13.6 13.1	.130 .102 .095	952 786 794	5.0 5.9 6.4	BEAM 45 46 T 47 T 48 T	L(cm) 101.6 101.6 101.6	w(cm)	h(cm) 9.3 9.8 10.0	88.5 76.5 79.5	.029 .033 .052	1348 1080 1059	8.7 5.7 3.5
BEAM 45 46 T 47 T 48 T 49 T	L(cm) HROKEN 108.0 105.0 106.0 106.5	w(cm) 11.2 11.6 11.0 11.6	h(cm) 9.9 9.6 9.7 9.6	P(kg) 16.5 13.6 13.1 12.9	.130 .102 .095	952 786 794 753	5.0 5.9 6.4 6.2	BEAM 45 46 T 47 T 48 T 49 T	L(cm) 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1	9.3 9.8 10.0 9.9	88.5 76.5 79.5 78.0	.029 .033 .052 .033	1348 1080 1059 1141	8.7 5.7 3.5 5.6
BEAM 45 46 T 47 T 48 T 49 T 50 B	L(cm) HROKEN 108.0 105.0 106.0 106.5 106.0	w(cm) 11.2 !1.6 11.0 11.6 11.0	9.9 9.6 9.7 9.6 9.6	P(kg) 16.5 13.6 13.1 12.9 18.7	.130 .102 .095 .095	952 786 794 753 1151	5.0 5.9 6.4 6.2 6.4	BEAM 45 46 T 47 T 48 T 49 T 50 B	L(cm) 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7	9.3 9.8 10.0 9.9	88.5 76.5 79.5 78.0 90.0	.029 .033 .052 .033	1348 1080 1059 1141 1196	8.7 5.7 3.5 5.6 4.9
BEAM 45 46 T 47 T 48 T 49 T 50 B 51 B	L(cm) BROKEN 108.0 105.0 106.0 106.5 106.0 105.0	W(cm) 11.2 11.6 11.0 11.6 11.0 11.0	9.9 9.6 9.7 9.6 9.6 9.9	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9	.130 .102 .095 .095 .140	952 786 794 753 1151 1137	5.0 5.9 6.4 6.2 6.4 5.4	45 46 T 47 T 48 T 49 T 50 B 51 B	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9	9.3 9.8 10.0 9.9 9.9	88.5 76.5 79.5 78.0 90.0 91.5	.029 .033 .052 .033 .041	1348 1080 1059 1141 1196 1405	8.7 5.7 3.5 5.6 4.9 6.2
BEAM 45 46 T 47 T 48 T 49 T 50 B 51 B 52 B	L(cm) HROKEN 108.0 105.0 106.5 106.0 105.0 105.5	w(cm) 11.2 11.6 11.0 11.6 11.0 10.7	9.9 9.6 9.7 9.6 9.6 9.9	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3	.130 .102 .095 .095 .140 .156	952 786 794 753 1151 1137 1306	5.0 5.9 6.4 6.2 6.4 5.4	45 46 T 47 T 48 T 49 T 50 B 51 B 52 B	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5	h(cm) 9.3 9.8 10.0 9.9 9.7 9.7	88.5 76.5 79.5 78.0 90.0 91.5 82.5	.029 .033 .052 .033 .041 .038	1348 1080 1059 1141 1196 1405	8.7 5.7 3.5 5.6 4.9 6.2 4.7
BEAM 45 46 T 47 T 48 T 49 T 50 B 51 B 52 B 53 B	L(cm) BROKEN 108.0 105.0 106.0 106.5 106.0 105.5 103.5	w(cm) 11.2 11.6 11.0 11.6 11.0 11.7 11.9	9.9 9.6 9.7 9.6 9.6 9.5 9.5	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 22.2	.130 .102 .095 .095 .140 .156 .165	952 786 794 753 1151 1137 1306	5.0 5.9 6.4 6.4 5.4 5.4	45 46 T 47 T 48 T 49 T 50 B 51 B 52 B 53 B	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0	h(cm) 9.3 9.8 10.0 9.9 9.7 9.7	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5	.029 .033 .052 .033 .041 .038 .043	1348 1080 1059 1141 1196 1405 1193 1392	8.7 5.7 3.5 5.6 4.9 6.2 4.7 6.4
BEAM 45 46 T 47 T 48 T 49 T 50 B 51 B 52 B 53 B 54 T	L(cm) BROKEN 108.0 105.0 106.5 106.0 105.0 105.5 103.5 103.5	W(cm) 11.2 11.6 11.0 11.6 11.0 11.7 11.9	9.9 9.6 9.7 9.6 9.9 9.5 9.5	P(kg) 16.5 13.6 13.1 12.9 18.7 19.2 20.3 22.2 7.6	.130 .102 .095 .095 .140 .156 .165 .175	952 786 794 753 1151 1137 1306 1264 509 +	5.0 5.9 6.4 6.2 6.4 5.4 6.2 5.4	45 46 T 47 T 48 T 49 T 50 B 51 B 52 B 53 B 54 B	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.7 10.9 11.5 11.0 11.3	9.3 9.8 10.0 9.9 9.7 9.7	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5	.029 .033 .052 .033 .041 .038 .043 .037	1348 1080 1059 1141 1196 1405 1193 1392 1193	8.7 5.7 3.5 5.6 4.9 6.2 4.7 6.4
BEAM 45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 T 55 T	L(cm) BROKEN 108.0 105.0 106.0 106.5 106.0 105.5 105.5 105.0 105.5	w(cm) 11.2 11.6 11.0 11.6 11.0 11.0 10.7 11.9 10.6	9.9 9.6 9.7 9.6 9.6 9.5 9.5	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 22.2 7.6 11.7	.130 .102 .095 .095 .140 .156 .165	952 786 794 753 1151 1137 1306 1264 509 +	5.0 5.9 6.4 6.4 5.4 5.4	45 46 47 48 49 50 8 51 8 52 8 53 8 54 8 55 7	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8	9.3 9.8 10.0 9.9 9.7 9.7 9.7	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5	.029 .033 .052 .033 .041 .038 .043 .037 .057	1348 1080 1059 1141 1196 1405 1193 1392 1193	8.7 5.7 3.5 5.6 4.9 6.2 4.7 6.4 4.0
BEAM 45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 T 55 T	L(cm) BROKEN 108.0 105.0 106.0 106.5 106.5 103.5 103.5 103.5 104.3	W(cm) 11.2 11.6 11.0 11.0 11.0 10.7 11.9 10.6 11.0	9.9 9.6 9.7 9.6 9.9 9.5 9.5 9.3	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 22.2 7.6 11.7 9.1	.130 .102 .095 .095 .140 .156 .165 .175 .061	952 786 794 753 1151 1137 1306 1264 509 + 836 662	5.9 6.4 6.2 6.4 5.4 6.4	45 T 46 T 48 T 50 B 51 B 52 B 53 B 55 T 56 T	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8 11.2	9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5 91.5	.029 .033 .052 .033 .041 .038 .043 .037 .057 .045	1348 1080 1059 1141 1196 1405 1193 1392 1193 973 1270	8.7 5.7 3.5 5.6 4.9 6.2 4.7 6.4 4.0 3.6
BEAM 45 46 T T 48 T T 50 B 51 B 52 B 53 B 54 T T 55 T T 57 T T	L(cm) BROKEN 108.0 105.0 106.5 106.0 105.5 105.0 105.5 103.5 105.0 106.5 106.5	W(cm) 11.2 11.6 11.0 11.6 11.0 11.7 11.9 10.6 10.6 11.0 11.1	h(cm) 9.9 9.6 9.7 9.6 9.5 9.5 9.5 9.8 8.8	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 22.2 7.6 11.7 9.1 13.1	.130 .102 .095 .095 .140 .156 .165 .175	952 786 794 753 1151 1137 1306 1264 509 + 836 662 910	5.0 5.9 6.4 6.2 6.4 5.4 6.2 5.4	45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 B 55 T 56 T	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8	h(cm) 9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7 9.2 9.2	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5	.029 .033 .052 .033 .041 .038 .043 .037 .057	1348 1080 1059 1141 1196 1405 1193 1392 1193	8.7 5.7 3.5 5.6 4.9 6.2 4.7 6.4 4.0
BEAM 45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 T 55 T 56 T 57 T	L(cm) BROKEN 108.0 105.0 106.0 106.5 106.5 103.5 103.5 103.5 104.3	W(cm) 11.2 11.6 11.0 11.0 11.0 10.7 11.9 10.6 11.0	9.9 9.6 9.7 9.6 9.9 9.5 9.5 9.3	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 22.2 7.6 11.7 9.1	.130 .102 .095 .095 .140 .156 .165 .175 .061 .108	952 786 794 753 1151 1137 1306 1264 509 + 836 662	5.0 5.9 6.4 6.2 5.4 6.7 6.4 9.9	45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 B 55 T 56 T 57 T 58 T	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8 11.2	9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5 91.5	.029 .033 .052 .033 .041 .038 .043 .037 .057 .045 .051	1348 1080 1059 1141 1196 1405 1193 1392 1193 973 1270 1402	8.7 5.7 3.5 5.6 4.9 6.2 4.7 6.4 4.0 3.6 4.3
BEAM 45 46 T T 48 T T 50 B 51 B 52 B 53 B 54 T T 55 T T 57 T T	L(cm) BROKEN 108.0 105.0 106.5 106.0 105.5 105.0 105.5 103.5 105.0 106.5 106.5	W(cm) 11.2 11.6 11.0 11.0 11.0 10.7 11.9 10.6 11.0 11.0 11.0 10.9	h(cm) 9.9 9.6 9.7 9.6 9.5 9.5 9.5 9.8 8.8	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 22.2 7.6 11.7 9.1 13.1	.130 .102 .095 .095 .140 .156 .165 .175 .061	952 786 794 753 1151 1137 1306 1264 509 + 836 662 910	5.9 6.4 6.2 6.4 5.4 6.4	45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 B 55 T 56 T	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8 11.2 10.9 11.9 10.6	h(cm) 9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7 9.2 9.2	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5 91.5	.029 .033 .052 .033 .041 .038 .043 .057 .057 .045 .051	1348 1080 1059 1141 1196 1405 1193 1392 1193 973 1270	8.7 5.7 3.5 5.6 4.9 6.2 4.7 6.4 4.0 3.6
BEAM 45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 T 55 T 56 T 57 T	L(cm) BROKEN 108.0 105.0 106.0 106.5 106.0 105.5 103.5 105.0 106.5 104.3	W(cm) 11.2 11.6 11.0 11.6 11.0 10.7 11.9 10.6 10.6 11.6 11.1	9.9 9.6 9.7 9.6 9.9 9.5 9.3 9.1 8.8 8.8	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 22.2 7.6 11.7 9.1 13.1 12.3	.130 .102 .095 .095 .140 .156 .165 .175 .061 .108	952 786 794 753 1151 1137 1306 1264 509 + 836 662 910 899	5.0 5.9 6.4 6.2 5.4 6.7 6.4 9.9	45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 B 55 T 56 T 57 T 58 T	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8 11.2 10.9 11.9	9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7 9.2	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5 60.0 75.0	.029 .033 .052 .033 .041 .038 .043 .037 .057 .045 .051	1348 1080 1059 1141 1196 1405 1193 1392 1193 973 1270 1402	8.7 5.7 3.5 5.6 4.9 6.2 4.7 6.4 4.0 3.6 4.3
BEAM 45 46 TT 47 TT 48 TT 50 B 51 B 52 B 53 TT 55 TT 58 TT 58 B 60 B	L(cm) BROKEN 108.0 105.0 106.5 106.0 105.5 103.5 105.0 106.5 104.3 106.5 106.0 106.5	W(cm) 11.2 11.6 11.0 11.6 11.0 11.0 11.0 11.9 10.6 10.6 11.0 11.0 10.9	9.9 9.6 9.5 9.5 9.3 9.1 8.8 8.8 8.9	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 22.2 7.6 11.7 9.1 13.1 12.3 16.1	.130 .102 .095 .095 .140 .156 .165 .175 .061 .108	952 786 794 753 1151 1137 1306 1364 509 + 836 662 910 899 1160	5.9 6.4 6.4 5.4 5.4 9.9 6.2	45 46 47 47 48 50 8 51 8 52 8 53 8 54 8 55 7 57 58 59 8 60 8	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.3 10.8 11.2 10.9 11.9	9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7 9.2 9.2 9.2	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5 60.0 75.0 81.0	.029 .033 .052 .033 .041 .038 .043 .037 .057 .045 .051 .041	1348 1080 1059 1141 1196 1405 1193 1392 1193 973 1270 1402	8.7 5.7 3.5 5.6 4.2 4.7 6.4 4.3 5.9
BEAM 45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 T 55 T 56 T 57 T 58 T 59 B 60 B Ave. ST	L(cm) BROKEN 108.0 105.0 106.0 106.5 106.0 105.5 103.5 105.0 106.5 106.5 106.5 106.5 106.5	W(cm) 11.2 11.6 11.0 11.6 11.0 11.0 10.7 11.9 10.6 10.6 11.0 11.0 10.9 10.2	9.9 9.6 9.7 9.6 9.9 9.5 9.3 9.1 8.8 8.8 8.9 8.9	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 22.2 7.6 11.7 9.1 13.1 12.3 16.1 14.4 88 ± 77	.130 .102 .095 .095 .140 .156 .165 .175 .061 .108	952 786 794 753 1151 1137 1306 1364 509 + 836 662 910 899 1160	5.9 6.4 6.4 5.4 5.4 9.9 6.2	45 46 T T 48 T T 50 B 51 B 52 B 53 B 55 T T 56 T T 57 T 58 T 57 T 58 T T 58 T T 58 T T 59 B 60 B Ave. ST	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8 11.2 10.9 10.6 10.7 \$161;	h(cm) 9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7 9.2 9.2 9.2 9.2 9.0 Ave. SB	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5 60.0 75.0 81.0	.029 .033 .052 .033 .041 .037 .057 .045 .051 .041	1348 1080 1059 1141 1196 1405 1193 1392 1193 973 1270 1402	8.7 5.7 3.5 5.6 4.2 4.7 6.4 4.3 5.9
BEAM 45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 T 55 T 56 T 57 T 58 T 59 B 60 B Ave. ST	L(cm) BROKEN 108.0 105.0 106.5 106.0 105.5 103.5 105.0 106.5 104.3 106.5 106.0 106.5	W(cm) 11.2 11.6 11.0 11.6 11.0 11.0 10.7 11.9 10.6 10.6 11.0 11.0 10.9 10.2	9.9 9.6 9.7 9.6 9.9 9.5 9.3 9.1 8.8 8.8 8.9 8.9	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 22.2 7.6 11.7 9.1 13.1 12.3 16.1 14.4 88 ± 77	.130 .102 .095 .095 .140 .156 .165 .175 .061 .108	952 786 794 753 1151 1137 1306 1364 509 + 836 662 910 899 1160	5.9 6.4 6.4 5.4 5.4 9.9 6.2	45 46 T T 48 T T 50 B 51 B 52 B 53 B 55 T T 56 T T 57 T 58 T 57 T 58 T T 58 T T 58 T T 59 B 60 B Ave. ST	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8 11.2 10.9 10.6 10.7 \$161;	9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7 9.2 9.2 9.2	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5 60.0 75.0 81.0	.029 .033 .052 .033 .041 .037 .057 .045 .051 .041	1348 1080 1059 1141 1196 1405 1193 1392 1193 973 1270 1402	8.7 5.7 3.5 5.6 4.2 4.7 6.4 4.3 5.9
BEAM 45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 T 55 T 56 T 57 T 58 T 59 B 60 B Ave. ST	L(cm) BROKEN 108.0 105.0 106.0 106.5 106.0 105.5 103.5 105.0 106.5 106.5 106.5 106.5 106.5	W(cm) 11.2 11.6 11.0 11.6 11.0 11.0 10.7 11.9 10.6 10.6 11.0 11.0 10.9 10.2	9.9 9.6 9.7 9.6 9.9 9.5 9.3 9.1 8.8 8.8 8.9 8.9	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 22.2 7.6 11.7 9.1 13.1 12.3 16.1 14.4 88 ± 77	.130 .102 .095 .095 .140 .156 .165 .175 .061 .108	952 786 794 753 1151 1137 1306 1364 509 + 836 662 910 899 1160	5.9 6.4 6.4 5.4 5.4 9.9 6.2	45 46 T T 48 T T 50 B 51 B 52 B 53 B 55 T T 56 T T 57 T 58 T 57 T 58 T T 58 T T 58 T T 59 B 60 B Ave. ST	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8 11.2 10.9 10.6 10.7 \$161;	h(cm) 9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7 9.2 9.2 9.2 9.2 9.0 Ave. SB	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5 60.0 75.0 81.0	.029 .033 .052 .033 .041 .037 .057 .045 .051 .041	1348 1080 1059 1141 1196 1405 1193 1392 1193 973 1270 1402	8.7 5.7 3.5 5.6 4.2 4.7 6.4 4.3 5.9
BEAM 45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 T 55 T 57 T 58 T 59 B 60 B Ave. ST Ave. ET	L(cm) BROKEN 108.0 105.0 106.0 106.5 106.0 105.5 103.5 105.0 106.5 106.0 106.5 106.0 106.5 106.0 106.0	W(cm) 11.2 11.6 11.0 11.6 11.0 11.0 11.7 11.9 10.6 10.6 11.0 10.9 10.2	9.9 9.6 9.7 9.6 9.9 9.5 9.3 9.1 8.8 8.9 8.9 SB = 11 EB = 6	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 22.2 7.6 11.7 9.1 13.1 12.3 16.1 14.4 88 ± 77 .1 ±0.6	.130 .102 .095 .095 .140 .156 .165 .175 .061 .108 .080	952 786 794 753 1151 1137 1306 1264 509 + 836 662 910 899 1160 1114	5.9 6.4 6.4 5.4 5.4 9.9 6.2	45 46 T T 48 T T 50 B 51 B 52 B 53 B 55 T T 56 T T 57 T 58 T 57 T 58 T T 58 T T 58 T T 59 B 60 B Ave. ST	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8 11.2 10.9 10.6 10.7 \$161;	h(cm) 9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7 9.2 9.2 9.2 9.2 9.0 Ave. SB	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5 60.0 75.0 81.0	.029 .033 .052 .033 .041 .037 .057 .045 .051 .041	1348 1080 1059 1141 1196 1405 1193 1392 1193 973 1270 1402	8.7 5.7 3.5 5.6 4.2 4.7 6.4 4.3 5.9
BEAM 45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 T 55 T 57 T 58 T 59 B 60 B Ave. ST Ave. ET	L(cm) BROKEN 108.0 105.0 106.0 106.5 106.0 105.5 103.5 105.0 106.5 106.5 106.5 106.5 106.5	W(cm) 11.2 11.6 11.0 11.6 11.0 11.0 11.7 11.9 10.6 10.6 11.0 10.9 10.2	9.9 9.6 9.7 9.6 9.9 9.5 9.3 9.1 8.8 8.9 8.9 SB = 11 EB = 6	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 22.2 7.6 11.7 9.1 13.1 12.3 16.1 14.4 88 ± 77 .1 ±0.6	.130 .102 .095 .095 .140 .156 .165 .175 .061 .108 .080	952 786 794 753 1151 1137 1306 1264 509 + 836 662 910 899 1160 1114	5.9 6.4 6.4 5.4 5.4 9.9 6.2	45 46 T T 48 T T 50 B 51 B 52 B 53 B 55 T T 56 T T 57 T 58 T 57 T 58 T T 58 T T 58 T T 59 B 60 B Ave. ST	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8 11.2 10.9 10.6 10.7 \$161;	h(cm) 9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7 9.2 9.2 9.2 9.2 9.0 Ave. SB	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5 60.0 75.0 81.0	.029 .033 .052 .033 .041 .037 .057 .045 .051 .041	1348 1080 1059 1141 1196 1405 1193 1392 1193 973 1270 1402	8.7 5.7 3.5 5.6 4.2 4.7 6.4 4.3 5.9
BEAM 45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 T 55 T 56 T 57 T 58 T 59 B 60 B Ave. ST Ave. ET	L(cm) BROKEN 108.0 105.0 105.0 106.5 106.0 105.5 103.5 105.0 106.5 106.5 106.5 106.5 106.6 106.0 106.5 = 824 ± 1	11.2 11.6 11.0 11.6 11.0 11.0 10.7 11.9 10.6 10.6 11.0 10.9 10.2 95; Ave.	9.9 9.6 9.7 9.6 9.9 9.5 9.3 9.1 8.8 8.8 8.9 8.9 Sb = 11 EB = 6	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 7.6 11.7 9.1 13.1 12.3 16.1 14.4 88 ± 77 .1 ±0.6	.130 .102 .095 .095 .140 .156 .165 .175 .061 .108 .080 .159 .137	952 786 794 753 1151 1137 1306 1264 509 836 662 910 1160 1114	5.09 6.4 6.2 5.4 6.4 6.2 5.4 6.4 9.9 6.2 6.9	45 46 T T 48 T T 50 B 51 B 52 B 53 B 55 T T 56 T T 57 T 58 T 57 T 58 T C 59 B 60 B Ave. ST	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8 11.2 10.9 10.6 10.7 \$161;	h(cm) 9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7 9.2 9.2 9.2 9.2 9.0 Ave. SB	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5 60.0 75.0 81.0	.029 .033 .052 .033 .041 .037 .057 .045 .051 .041	1348 1080 1059 1141 1196 1405 1193 1392 1193 973 1270 1402	8.7 5.7 3.5 5.6 4.2 4.7 6.4 4.3 5.9
BEAM 45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 T 55 T 56 T 57 T 58 T 59 B 60 B Ave. ST Ave. ET	L(cm) BROKEN 108.0 105.0 105.0 106.5 106.0 105.5 103.5 105.0 106.5 106.5 106.5 106.5 106.6 106.0 106.5 106.0 106.1 106.1 106.1 106.1 106.1	w(cm) 11.2 11.6 11.0 11.6 11.0 10.7 11.9 10.6 10.6 11.0 10.9 10.2 95; Ave. 19°C) Iss 11.3	9.9 9.6 9.7 9.6 9.9 9.5 9.5 9.3 9.1 8.9 8.8 8.8 8.9 8.9 SB = 11 8.9	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 22.2 7.6 11.7 9.1 12.3 16.1 14.4 88 ± 77 .1 ±0.6 Simple	.130 .102 .095 .095 .140 .156 .165 .175 .061 .108 .080 .159 .137	952 786 794 753 1151 1137 1306 1264 509 + 836 662 910 899 1160 1114	5.09 6.4 6.4 6.4 6.4 6.4 9.9 6.2 6.9	45 46 T T 48 T T 50 B 51 B 52 B 53 B 55 T T 56 T T 57 T 58 T 57 T 58 T C 59 B 60 B Ave. ST	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8 11.2 10.9 10.6 10.7 \$161;	h(cm) 9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7 9.2 9.2 9.2 9.2 9.0 Ave. SB	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5 60.0 75.0 81.0	.029 .033 .052 .033 .041 .037 .057 .045 .051 .041	1348 1080 1059 1141 1196 1405 1193 1392 1193 973 1270 1402	8.7 5.7 3.5 5.6 4.2 4.7 6.4 4.3 5.9
BEAM 45 46 T 47 T 48 T 49 T 50 B 51 B 52 B 53 B 54 T 55 T 57 T 58 T 59 B 60 B Ave. ST Ave. ET	L(cm) BROKEN 108.0 105.0 106.0 106.5 106.0 105.5 103.5 105.0 106.5 106.0 106.5 106.0 106.5 106.0 106.5 106.0 106.1 101.6	w(cm) 11.2 11.6 11.0 11.6 11.0 11.7 11.9 10.6 10.6 11.0 10.6 11.0 10.9 10.2 95; Ave. 6; Ave.	9.9 9.6 9.7 9.6 9.9 9.5 9.3 9.1 8.8 8.9 8.9 8.9	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 22.2 7.6 11.7 9.1 13.1 12.3 16.1 14.4 88 ± 77 .1 ±0.6	.130 .102 .095 .095 .140 .156 .165 .175 .061 .108 .080 .159 .137	952 786 794 753 1151 1137 1306 1264 509 + 836 662 910 899 1160 1114	5.9 6.4 6.4 6.4 6.4 9.9 6.9 6.9	45 46 T T 48 T T 50 B 51 B 52 B 53 B 55 T T 56 T T 57 T 58 T 57 T 58 T C 59 B 60 B Ave. ST	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8 11.2 10.9 10.6 10.7 \$161;	h(cm) 9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7 9.2 9.2 9.2 9.2 9.0 Ave. SB	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5 60.0 75.0 81.0	.029 .033 .052 .033 .041 .037 .057 .045 .051 .041	1348 1080 1059 1141 1196 1405 1193 1392 1193 973 1270 1402	8.7 5.7 3.5 5.6 4.2 4.7 6.4 4.3 5.9
BEAM 45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 T 55 T 56 T 57 T 58 T 59 B 60 B Ave. ST Ave. ET	L(cm) BROKEN 108.0 105.0 106.0 106.5 106.0 105.5 103.5 105.0 106.5 106.0 106.5 106.0 106.5 106.0 106.1 106.6 101.6	W(cm) 11.2 11.6 11.0 11.6 11.0 11.7 11.9 10.6 10.6 11.0 11.0 11.6 11.0 10.9 10.2 95; Ave. 6; Ave.	9.9 9.6 9.7 9.6 9.5 9.5 9.3 9.1 8.9 8.8 8.9 8.9 othermal 8.9 8.6 8.3	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 22.2 7.6 11.7 9.1 12.3 16.1 14.4 88 ± 77 .1 ±0.6 Simple 120.0 91.5 121.5	.130 .102 .095 .095 .140 .156 .165 .175 .061 .108 .080 .159 .137	952 786 794 753 1151 1137 1306 1264 509 + 836 662 910 899 1160 1114	5.9 6.4 6.2 6.4 6.4 9.9 6.9 6.4 7.3	45 46 T T 48 T T 50 B 51 B 52 B 53 B 55 T T 56 T T 57 T 58 T 57 T 58 T C 59 B 60 B Ave. ST	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8 11.2 10.9 10.6 10.7 \$161;	h(cm) 9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7 9.2 9.2 9.2 9.2 9.0 Ave. SB	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5 60.0 75.0 81.0	.029 .033 .052 .033 .041 .037 .057 .045 .051 .041	1348 1080 1059 1141 1196 1405 1193 1392 1193 973 1270 1402	8.7 5.7 3.5 5.6 4.2 4.7 6.4 4.3 5.9
BEAM 45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 T 55 T 56 T 57 T 58 T 59 B 60 B Ave. ST Ave. ET	L(cm) BROKEN 108.0 105.0 106.5 106.0 105.5 103.5 105.0 106.5 104.3 106.5 106.0 106.5 106.0 106.0 106.1 106.0 106.1 106.0 106.1	11.2 11.6 11.0 11.6 11.0 11.0 10.7 11.9 10.6 10.6 11.0 10.9 10.2 95; Ave. 6; Ave.	9.9 9.6 9.7 9.6 9.9 9.5 9.5 9.3 9.1 8.9 8.8 8.8 8.9 8.9 8.9 8.9 8.9 8.9 8.9	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 22.2 7.6 11.7 9.1 13.1 12.3 16.1 14.4 88 ± 77 1.1 20.0 91.5 120.0 91.5 121.5 88.5	.130 .102 .095 .095 .140 .156 .165 .175 .061 .108 .080 .159 .137	952 786 794 753 1151 1137 1306 1264 509 + 836 662 910 899 1160 1114	5.09 6.46.4 6.456.4 6.49 6.49 6.49	45 46 T T 48 T T 50 B 51 B 52 B 53 B 55 T T 56 T T 57 T 58 T 57 T 58 T C 59 B 60 B Ave. ST	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8 11.2 10.9 10.6 10.7 \$161;	h(cm) 9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7 9.2 9.2 9.2 9.2 9.0 Ave. SB	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5 60.0 75.0 81.0	.029 .033 .052 .033 .041 .037 .057 .045 .051 .041	1348 1080 1059 1141 1196 1405 1193 1392 1193 973 1270 1402	8.7 5.7 3.5 5.6 4.2 4.7 6.4 4.3 5.9
BEAM 45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 T 55 T 56 T 57 T 58 T 59 B 60 B Ave. ST Ave. ET	L(cm) BROKEN 108.0 105.0 106.0 106.5 106.0 105.5 103.5 105.0 106.5 106.5 106.0 106.5 106.0 106.1 106.0 106.6 101.6 101.6 101.6 101.6	11.2 11.6 11.0 11.6 11.0 11.0 11.0 10.7 11.9 10.6 10.6 11.0 10.9 10.2 95; Ave. 6; Ave.	h(cm) 9.9 9.6 9.7 9.6 9.9 9.5 9.3 9.1 8.9 8.8 8.9 8.9 Sb = 16 8.9 8.6 8.5 8.5	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 22.2 7.6 11.7 9.1 13.1 14.4 88 ± 77 .1 ±0.6 Simple 120.0 91.5 121.5 188.5 108.0	.130 .102 .095 .095 .146 .156 .175 .061 .108 .080 .159 .137	952 786 794 753 1151 1137 1306 1264 509 + 836 662 910 899 1160 1114	5.9 6.4 6.4 5.4 6.4 9.9 6.9 6.4 7.2 6.4	45 46 T T 48 T T 50 B 51 B 52 B 53 B 55 T T 56 T T 57 T 58 T 57 T 58 T C 59 B 60 B Ave. ST	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8 11.2 10.9 10.6 10.7 \$161;	h(cm) 9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7 9.2 9.2 9.2 9.2 9.0 Ave. SB	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5 60.0 75.0 81.0	.029 .033 .052 .033 .041 .037 .057 .045 .051 .041	1348 1080 1059 1141 1196 1405 1193 1392 1193 973 1270 1402	8.7 5.7 3.5 5.6 4.2 4.7 6.4 4.3 5.9
BEAM 45 46 T 47 T 48 T 50 B 51 B 52 B 53 T 55 T 57 T 58 T 59 B 60 B Ave. ST Ave. ET Apr. 14 61 B 62 T 63 B 64 B 65 T	L(cm) BROKEN 108.0 105.0 106.0 106.5 106.0 105.5 103.5 105.0 106.5 106.0 106.5 106.0 106.5 106.0 106.1 101.6 101.6 101.6 101.6 101.6	W(cm) 11.2 11.6 11.0 11.6 11.0 11.7 11.9 10.6 11.0 10.9 10.2 95; Ave. 6; Ave. 19°C) Is 11.3 10.2 11.4 11.0 11.0	9.9 9.6 9.7 9.6 9.9 9.5 9.3 9.1 8.8 8.9 8.9 8.9 8.6 8.3 8.5 8.5	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 22.2 7.6 11.7 9.1 13.1 12.3 16.1 14.4 88 ± 77 1.1 20.0 91.5 120.0 91.5 121.5 88.5	.130 .102 .095 .095 .140 .156 .165 .175 .061 .108 .080 .159 .137	952 786 794 753 1151 1137 1306 1264 509 + 836 662 910 899 1160 1114	5.9 6.4 6.4 6.4 6.4 9 6.9 6.4 6.4 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	45 46 T T 48 T T 50 B 51 B 52 B 53 B 55 T T 56 T T 57 T 58 T 57 T 58 T C 59 B 60 B Ave. ST	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8 11.2 10.9 10.6 10.7 \$161;	h(cm) 9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7 9.2 9.2 9.2 9.2 9.0 Ave. SB	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5 60.0 75.0 81.0	.029 .033 .052 .033 .041 .037 .057 .045 .051 .041	1348 1080 1059 1141 1196 1405 1193 1392 1193 973 1270 1402	8.7 5.7 3.5 5.6 4.2 4.7 6.4 4.3 5.9
BEAM 45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 T 55 T 56 T 57 T 58 T 59 B 60 B Ave. ST Ave. ET	L(cm) BROKEN 108.0 105.0 106.0 106.5 106.0 105.5 103.5 105.0 106.5 106.5 106.0 106.5 106.0 106.1 106.0 106.6 101.6 101.6 101.6 101.6	11.2 11.6 11.0 11.6 11.0 11.0 11.0 10.7 11.9 10.6 10.6 11.0 10.9 10.2 95; Ave. 6; Ave.	h(cm) 9.9 9.6 9.7 9.6 9.9 9.5 9.3 9.1 8.9 8.8 8.9 8.9 Sb = 16 8.9 8.6 8.5 8.5	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 22.2 7.6 11.7 9.1 13.1 14.4 88 ± 77 .1 ±0.6 Simple 120.0 91.5 121.5 188.5 108.0	.130 .102 .095 .095 .146 .156 .175 .061 .108 .080 .159 .137	952 786 794 753 1151 1137 1306 1264 509 + 836 662 910 899 1160 1114	5.9 6.4 6.4 5.4 6.4 9.9 6.9 6.4 7.2 6.4	45 46 T T 48 T T 50 B 51 B 52 B 53 B 55 T T 56 T T 57 T 58 T 57 T 58 T C 59 B 60 B Ave. ST	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8 11.2 10.9 10.6 10.7 \$161;	h(cm) 9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7 9.2 9.2 9.2 9.2 9.0 Ave. SB	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5 60.0 75.0 81.0	.029 .033 .052 .033 .041 .037 .057 .045 .051 .041	1348 1080 1059 1141 1196 1405 1193 1392 1193 973 1270 1402	8.7 5.7 3.5 5.6 4.2 4.7 6.4 4.3 5.9
BEAM 45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 T 55 T 56 T 57 T 58 T 59 B 60 B Ave. ET Apr. 14 61 B 62 T 63 B 64 T 65 B 64 T 65 B 64 T 65 B	L(cm) BROKEN 108.0 105.0 106.0 106.5 106.0 105.5 103.5 105.0 106.5 106.5 106.5 106.6 106.6 101.6 101.6 101.6 101.6 101.6	11.2 11.6 11.0 11.6 11.0 11.0 10.7 11.9 10.6 11.0 10.9 10.2 95; Ave. 6; Ave.	9.9 9.6 9.7 9.6 9.9 9.5 9.5 9.3 9.1 8.9 8.8 8.9 8.9 8.9 8.9 8.6 8.5 8.5 8.5 8.5	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 22.2 7.6 11.7 9.1 13.1 12.3 16.1 14.4 88 ± 77 1.1 20.0 91.5 120.0 85.5 114.0	.130 .102 .095 .095 .140 .156 .165 .175 .061 .108 .080 .159 .137	952 786 794 753 1151 1137 1306 1264 509 + 836 662 910 899 1160 1114	5.9 6.4 6.4 6.4 6.4 9 6.9 6.4 6.4 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	45 46 T T 48 T T 50 B 51 B 52 B 53 B 55 T T 56 T T 57 T 58 T 57 T 58 T C 59 B 60 B Ave. ST	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8 11.2 10.9 10.6 10.7 \$161;	h(cm) 9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7 9.2 9.2 9.2 9.2 9.0 Ave. SB	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5 60.0 75.0 81.0	.029 .033 .052 .033 .041 .037 .057 .045 .051 .041	1348 1080 1059 1141 1196 1405 1193 1392 1193 973 1270 1402	8.7 5.7 3.5 5.6 4.2 4.7 6.4 4.3 5.9
BEAM 45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 T 55 T 56 T 58 T 59 B 60 B Ave. ST Ave. ET 61 B 62 B 64 65 B 64 T 65 B 65 B 66 T B 67 B Ave. ST	L(cm) BROKEN 108.0 105.0 106.5 106.0 105.5 103.5 105.5 103.5 106.5 106.5 106.5 106.6 106.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	11.2 11.6 11.0 11.6 11.0 11.0 11.0 10.6 10.6	h(cm) 9.9 9.6 9.7 9.6 9.5 9.5 9.3 8.9 8.9 8.9 8.9 8.9 8.9 8.9	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 7.6 11.7 9.1 13.1 12.3 16.1 14.4 88 ± 77 .1 ±0.6 Simple 120.0 91.5 88.5 108.0 85.5 114.0	.130 .102 .095 .095 .140 .156 .165 .175 .061 .108 .080 .159 .137	952 786 794 753 1151 1137 1306 1264 509 + 836 662 910 899 1160 1114	5.9 6.4 6.4 6.4 6.4 9 6.9 6.4 6.4 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	45 46 T T 48 T T 50 B 51 B 52 B 53 B 55 T T 56 T T 57 T 58 T 57 T 58 T C 59 B 60 B Ave. ST	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8 11.2 10.9 10.6 10.7 \$161;	h(cm) 9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7 9.2 9.2 9.2 9.2 9.0 Ave. SB	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5 60.0 75.0 81.0	.029 .033 .052 .033 .041 .037 .057 .045 .051 .041	1348 1080 1059 1141 1196 1405 1193 1392 1193 973 1270 1402	8.7 5.7 3.5 5.6 4.2 4.7 6.4 4.3 5.9
BEAM 45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 T 55 T 56 T 58 T 59 B 60 B Ave. ST Ave. ET 61 B 62 B 64 65 B 64 T 65 B 65 B 66 T B 67 B Ave. ST	L(cm) BROKEN 108.0 105.0 106.0 106.5 106.0 105.5 103.5 105.0 106.5 106.5 106.5 106.6 106.6 101.6 101.6 101.6 101.6 101.6	11.2 11.6 11.0 11.6 11.0 11.0 11.0 10.6 10.6	h(cm) 9.9 9.6 9.7 9.6 9.5 9.5 9.3 8.9 8.9 8.9 8.9 8.9 8.9 8.9	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 7.6 11.7 9.1 13.1 12.3 16.1 14.4 88 ± 77 .1 ±0.6 Simple 120.0 91.5 88.5 108.0 85.5 114.0	.130 .102 .095 .095 .140 .156 .165 .175 .061 .108 .080 .159 .137	952 786 794 753 1151 1137 1306 1264 509 + 836 662 910 899 1160 1114	5.9 6.4 6.4 6.4 6.4 9 6.9 6.4 6.4 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	45 46 T T 48 T T 50 B 51 B 52 B 53 B 55 T T 56 T T 57 T 58 T 57 T 58 T C 59 B 60 B Ave. ST	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8 11.2 10.9 10.6 10.7 \$161;	h(cm) 9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7 9.2 9.2 9.2 9.2 9.0 Ave. SB	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5 60.0 75.0 81.0	.029 .033 .052 .033 .041 .037 .057 .045 .051 .041	1348 1080 1059 1141 1196 1405 1193 1392 1193 973 1270 1402	8.7 5.7 3.5 5.6 4.2 4.7 6.4 4.3 5.9
BEAM 45 46 T 47 T 48 T 50 B 51 B 52 B 53 B 54 T 55 T 56 T 57 T 58 B 60 B Ave. ET Apr. 14 61 B 62 B 64 T 63 B 64 T 65 B 65 T 66 B	L(cm) BROKEN 108.0 105.0 106.5 106.0 105.5 103.5 105.5 103.5 106.5 106.5 106.5 106.6 106.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	11.2 11.6 11.0 11.6 11.0 11.0 11.0 10.6 10.6	h(cm) 9.9 9.6 9.7 9.6 9.5 9.5 9.3 8.9 8.9 8.9 8.9 8.9 8.9 8.9	P(kg) 16.5 13.6 13.1 12.9 18.7 19.9 20.3 7.6 11.7 9.1 13.1 12.3 16.1 14.4 88 ± 77 .1 ±0.6 Simple 120.0 91.5 88.5 108.0 85.5 114.0	.130 .102 .095 .095 .140 .156 .165 .175 .061 .108 .080 .159 .137	952 786 794 753 1151 1137 1306 1264 509 + 836 662 910 899 1160 1114	5.9 6.4 6.4 6.4 6.4 9 6.9 6.4 6.4 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	45 46 T T 48 T T 50 B 51 B 52 B 53 B 55 T T 56 T T 57 T 58 T 57 T 58 T C 59 B 60 B Ave. ST	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	w(cm) 11.3 11.1 11.3 11.1 11.7 10.9 11.5 11.0 11.3 10.8 11.2 10.9 10.6 10.7 \$161;	h(cm) 9.3 9.8 10.0 9.9 9.7 9.7 9.7 9.7 9.2 9.2 9.2 9.2 9.0 Ave. SB	88.5 76.5 79.5 78.0 90.0 91.5 82.5 91.5 91.5 60.0 75.0 81.0	.029 .033 .052 .033 .041 .037 .057 .045 .051 .041	1348 1080 1059 1141 1196 1405 1193 1392 1193 973 1270 1402	8.7 5.7 3.5 5.6 4.2 4.7 6.4 4.3 5.9

SHEET 3 (Cont.) (UNSEEDED)

Apr.	14,	1983 (-1	9°C) Car	ntilever					Paralle	l Simple	Suppor	t				
BEAM		L(cm)	w(cm)	h(cm)	P(kg)	d(cm)	S(kPa)	E(GPa)	BEAM	L(cm)	w(cm)	h(cma)	P(kg)	d(ca)	S(kPa)	E(GPa)
80 E 81 E 82 E	r r r r r B B B B B	107.5 108.0 107.5 107.0 107.0 107.0 104.5 99.0 107.5 107.5 BROKEN 107.5 107.0 100.5	10.6 11.4 10.7 10.8 11.5 10.9 11.2 10.5 11.5 11.5 11.7 11.4 10.6 11.5	12.8 12.7 12.1 10.9 11.0 11.2 11.5 11.5 11.6	22.7 27.4 19.9 19.9 23.6 19.9 8.0 24.6 29.8 24.1 27.9 26.0 30.7 37.8 29.8	.095 .189 .125 .122 .138 .106 .042 .157 .134 .073	826 947 733 973 1069 983 351 1030 1238 1002 1092 996 1293 1479 1306	5.4 5.4 5.4 5.4 5.4 5.4 5.4 5.5 5.5 5.5	68 TT 70 TT 72 TT 73 TT 75 B 76 B 77 B 80 B 81 B 82 B 83 B	101.6 101.6 101.6 101.6 101.6 101.6 101.6 91.4 101.6 RECORD 81.3 101.6 101.6 101.6	10.9 10.4 10.4 11.0 11.3 11.5 10.9 11.4 11.4 2R MALFU 11.1 11.0 11.6 11.0	12.0 11.6 11.6 11.5 11.8 12.0 12.0 NCTION 12.0 12.0 12.0 12.0	97.5 108.8 105.0 96.0 127.5 116.2 101.3 153.8 150.0 198.8 120.0 161.2 161.2 131.3 150.0		862 1143 1146 1014 1230 959 + 1040 1305 1423 1484 1174 1386 1500 1225 1561	
	В	106.5	11.1	11.4	24.1	.118	1047	5.9	84 T	101.6	11.0	11.4	108.8		1018	
		= 922 ±12 = 5.4 ±0							Ave. S _I	- 1064	±120;	Ave. S _B	= 1382 ±	137		
Apr.	15,	1983 (-	5°C) Iso	thermal	Simple S	Support										
85 E		101.6 101.6	11.0 11.1	12.3 12.3	232.5 172.5		1527 + 1394									
Ave.	SB	- 1394														

+Off center break exceeding 10cm #Crack in ice sheet

SHEET 4 (SEEDED)

Apr.	. 25,	1983 (-1 °C) G	entileve	r				Par	allel	. Simple	S apport	:				
REA	1	L(cm)	w(cm)	h(cm)	P(kg)	d(cm)	S(kPa)	E(GPa)	BEA	M	L(cm)	w(ca)	h(ca)	P(kg)	d(cm)	S(kPa)	E(GPa)
1	T	87.0	14.3	8.3	14.7	.092	761	5.0	1	T	81.3	13.9	8.4	112.5		1424	
2	T	86.5	13.5	8.8	14.6	.114	708	3.5	2	T	81.3	13.7	8.5	115.5		1447	
3	T	87.0	14.0	8.4	14.6	.108	754	4.2	2	T	81.3	13.9	8.5	129.0		1587	
4	В	88.0	13.1	8.4	12.9	.105	720	4.2	4	В	81.3	13.4	8.8	87.0		1052	
5	В	86.5	14.0	8.4	15.7	.114	808	4.2	5	В	81.3	13.9	8.8	90.0		1050	
6	В	84.0	13.9	8.5	18.2	.140	893	3.5	6	В	81.3	13.8	9.0	97.5		1092	
7	T	87.0	8.7	8.6	9.5	.092	752	4.8	7	T	81.3	9.3	9.0	104.9		1674	
8	T	87.0	8.8	8.8	11.7	.121	880	4.2	8	T	BROKEN	-					
8 9	Ť	86.8	8.4	8.9	8.7	.086	667	4.4	9	T	81.3	8.4	9.2	87.0		1511	
10	В	86.5	8.7	8.9	10.4	.105	768	4.1	10	В	BROKEN						
11	В	87.0	8.8	8.9	10.6	.105	777	4.2	11	В	81.3	8.2	9.3	57.0		879	
12	В	87.0	8.8	8.8	10.2	.098	766	4.5	12	В	81.3	8.9	9.4	60.0		959	
Ave	. ET	= 4.4 ±0	72; Ave. .5; Ave.	E _B = 4.	1 ±0.3				AVE	. s _T	= 1529	11U3; A	ле. 58 -	• 1006 ±	30		
Apr	. 27,	1983 (-	1°C) Iso	thermal	Simple S	Support											
13	В	91.4	10.4	7.9	62.2		1345										
14	В	91.4	9.8	7.7	54.8		1239		l								
15	В	91.4	9.9	8.0	61.7		1380		l								
16	T	91.4	10.2	8.2	104.5		2005		ŀ								
17	T	91.4	10.0	8.2	104.5		2157										
18 19	B	91.4	9.7	8.2	62.2		1308		ł								
19	T	91.4	10.2	8.3	107.0		2114		1								
									•								
20	В	91.4	10.0	8.5	26.4		1257		l								

Ave. $S_T = 2092 \pm 78$; Ave. $S_E = 1268 \pm 108$

mpr. 20,	1905 (-5	0) 1800	SELIMAL D	rmbre o	appor c		
BEAM	L(cn)	w(cm)	h(cm)	P(kg)	d(cm)	S(kPa)	ı

BEA	M	L(cn)	w(cm)	h(cm)	P(kg)	d(cm)	S(kPa)	E(GPa)
							•	
22	В	91.4	9.5	7.6	74.7	.065	1903	5.1
23	В	91.4	9.7	7.4	71.7	.043	1848	8.0
24	В	91.4	10.3	7.2	76.7	.057	2014	6.5
25	T	91.4	9.9	7.2	79.7	.062	1958	6.5
26	T	91.4	10.0	7.7	119.5	.090	2780	5.4
27	Ţ	91.4	9.7	7.8	99.5	.078	2066	5.2
28	T	91.4	9.8	7.9	97.1	.075	2043	5.0
29	T	91.4	10.3	8.0	131.9	.076	2759	6.1

Ave. $S_T = 2321 \pm 411$; Ave. $S_B = 1922 \pm 85$ Ave. $E_T = 5.6 \pm 0.6$; Ave. $E_B = 6.5 \pm 1.5$

Apr. 28, 1983 (-10°C) Centilever

30	T	107.0	9.8	10.3	11.3	.089	687	5.7
31	T	107.5	10.0	10.2	12.3	.092	758	6.1
32	T	107.5	9.9	10.2	13.2	.130	816	4.7
33	В	107.5	10.5	10.0	13.7	.133	825	4.8
34	В	108.0	9.6	9.8	11.3	.121	793	5.1
35	B	106.5	10.4	9.8	12.3		771	
36	В	77.0	9.9	10.1	19.4	.080	869	4.3
37	В	77.5	9.8	10.1	16.1	.070	733	4.2
38	В	76.5	10.0	10.0	19.9	-086	897	4.1
39	T	77.0	9.9	10.0	16.5	.089	768	3.4
40	T	76.5	9.8	9.7	16.5	.089	811	3.6
41	T	76.5	10.0	9.7	15.6	.080	753	3.8

Ave. $S_T = 766 \pm 47$; Ave. $S_B = 815 \pm 61$ Ave. $E_T = 4.5 \pm 1.1$; Ave. $E_B = 4.5 \pm 0.4$

Apr.	29,	1983	(-10°C)	Isothermal	Simple	Support
------	-----	------	---------	------------	--------	---------

	Parall	el Simple	• Suppor	t			S(kPa)	
)	BEAM	L(cm)	w(cm)	h(cm)	P(kg)	d(cm)	S(kPa)	E(GPa

П	r(GII)	W(CE)	n(car)	P(Kg)	a(cm)	5(KPa)	E(GPa)
~	naconna	D 144 - TER	(TENT / 141				
T	KELLIKUE	K MATTAN	CITON				
T	101.6	10.1	10.5	194.1	.067	2670	6.4
T	101.6	10.1	10.4	201.6	.102	28'24	4.5
В	101.6	10.1	10.3	124.5	.056	1802	5.2
B	101.6	9.9	10.4	124.5	.087	1700	3.3
В	101.6	9.9	10.3	117.0	.061	1740	4.6
В	71.1	10.1	10.0	184.2	.065	1591	2.5
В	71.1	9.5	10.2	166.8	.064	1722	2.3
В	71.1	10.5	10.2	151.8		1486	
T	71.1	10.0	9.7	219.0	.073	2493	2.9
T	71.1	10.0	9.7	224.0	.027	2488	8.0
T	71.1	9.9	9.7	234.0	.025	2563	9.0
	T T B B B B B T T	T RECORDE T 101.6 T 101.6 B 101.6 B 101.6 B 101.6 B 71.1 B 71.1 T 71.1 T 71.1	T 101.6 10.1 T 101.6 10.1 B 101.6 10.1 B 101.6 9.9 B 101.6 9.9 B 71.1 10.1 B 71.1 9.5 B 71.1 10.5 T 71.1 10.0	T RECORDER MALFUNCTION T 101.6 10.1 10.5 T 101.6 10.1 10.4 B 101.6 10.1 10.3 B 101.6 9.9 10.4 B 101.6 9.9 10.3 B 71.1 10.1 10.0 B 71.1 9.5 10.2 T 71.1 10.5 10.2 T 71.1 10.0 9.7 T 71.1 10.0 9.7	T RECORDER MALFUNCTION T 101.6 10.1 10.5 194.1 T 101.6 10.1 10.4 201.6 B 101.6 10.1 10.3 124.5 B 101.6 9.9 10.4 124.5 B 101.6 9.9 10.3 117.0 B 71.1 10.1 10.0 184.2 B 71.1 9.5 10.2 166.8 B 71.1 10.5 10.2 151.8 T 71.1 10.0 9.7 219.0 T 71.1 10.0 9.7 224.0	T RECORDER MALFUNCTION T 101.6 10.1 10.5 194.1 .067 T 101.6 10.1 10.4 201.6 .102 B 101.6 10.1 10.3 124.5 .056 B 101.6 9.9 10.4 124.5 .067 B 101.6 9.9 10.0 117.0 .061 B 71.1 10.1 10.0 184.2 .065 B 71.1 9.5 10.2 166.8 .064 B 71.1 10.5 10.2 151.8 T 71.1 10.0 9.7 219.0 .073 T 71.1 10.0 9.7 224.0 .027	T RECORDER MALFUNCTION T 101.6 10.1 10.5 194.1 .067 2670 T 101.6 10.1 10.4 201.6 .102 2824 B 101.6 10.1 10.3 124.5 .056 1802 B 101.6 9.9 10.4 124.5 .087 1700 B 101.6 9.9 10.3 117.0 .061 1740 B 71.1 10.1 10.0 184.2 .065 1591 B 71.1 9.5 10.2 166.8 .064 1722 B 71.1 10.5 10.2 151.8 1486 T 71.1 10.0 9.7 219.0 .073 2493 T 71.1 10.0 9.7 224.0 .027 2488

Ave. $S_T = 2608 \pm 142$; Ave. $S_B = 1674 \pm 115$ Ave. $E_T = 6.2 \pm 2.5$; Ave. $E_B = 3.6 \pm 1.3$

Apr. 29, 1983 (-10°C) Cantilever

		•					
T	110.0	12.0	9.0	11.8	.165	786	4.3
T	111.0	12.0	9.0	13.4	.178	902	4.6
T	110.0	11.5	9.0	13.6	. 188	945	4.5
T	110.5	12.0	9.0	14.8	.197		4.6
В	109.5	11.5	9.0	9.8	.137		4.4
В	110.0	11.0	9.2				4.4
В	109.5	11.5	9.1				4.7
	BROKEN		- • •			. • •	.,,,
	T T B B	T 111.0 T 110.0 T 110.5 B 109.5 B 110.0 B 109.5	T 111.0 12.0 T 110.0 11.5 T 110.5 12.0 B 109.5 11.5 B 110.0 11.0 B 109.5 11.5	T 111.0 12.0 9.0 T 110.0 11.5 9.0 T 110.5 12.0 9.0 B 109.5 11.5 9.0 B 110.0 11.0 9.2 B 109.5 11.5 9.1	T 111.0 12.0 9.0 13.4 T 110.0 11.5 9.0 13.6 T 110.5 12.0 9.0 14.8 B 109.5 11.5 9.0 9.8 B 110.0 11.0 9.2 11.3 B 109.5 11.5 9.1 11.3	T 111.0 12.0 9.0 13.4 .178 T 110.0 11.5 9.0 13.6 .188 T 110.5 12.0 9.0 14.8 .197 B 109.5 11.5 9.0 9.8 .137 B 110.0 11.0 9.2 11.3 .156 B 109.5 11.5 9.1 11.3 .143	T 111.0 12.0 9.0 13.4 .178 902 T 110.0 11.5 9.0 13.6 .188 945 T 110.5 12.0 9.0 14.8 .197 986 B 109.5 11.5 9.0 9.8 .137 680 B 110.0 11.0 9.2 11.3 .156 788 B 109.5 11.5 9.1 11.3 .143 767

Ave. $S_T = 905 \pm 86$; Ave. $S_B = 745 \pm 57$ Ave. $E_T = 4.5 \pm 0.1$; Ave. $E_B = 4.5 \pm 0.2$

Ave. $S_T = 1319 \pm 169$; Ave. $S_B = 991 \pm 57$ Ave. $E_T = 5.0 \pm 0.4$; Ave. $E_B = 4.5 \pm 1.2$

						:	SHEET 4 (SEE	(Cont.) OED)						
May 2,	1983 (-19	°C) Canti	Llever					Parall	el Simple	Support	Ŀ			
BEAM	L(cm)	w(cm)	h(cm)	P(kg)	d(cm)	S(kPa)	E(GPa)	BEAM	L(cm)	w(ca)	h(cm)	P(kg)	d(cm)	S(kPa)
62 T	110.5	11.2	9.4	15.1		993		62 T	101.6	11.2	9.8	141.9	.057	2126
63 T	110.0	11.4	9.6	16.7	.171	1025	5.1	63		er malfü	NCTION			
64 T	109.5	11.7	9.6	15.1	.156	903	4.8	64	11	"				
65 T	109.5	11.8	9.8	16.6	-178	941	4.3	65	"					
66 T	109.5	11.7	9.8	15.1	.133	866	5.3	66	,,	**				
67 B	111.0	11.6	9.9	13.6	.130	783	5.0	67			10.4	60 3	000	010
68 B	109.5	11.3	10.3	18.7	.184	1005	4.2	68 B	101.6	11.4	10.4	69.7	.022	912
69 B	110.5	11.5	10.0	16.6	.159	936	4.8	69 B	101.6	11.5	10.4	93.6	.040	1191
70 B	110.0	10.7	10.0	12.8	.116	773	5.4	70 T	101.6	11.2	10.5	114.5	.059	1449
	T = 946 ± T = 4.9 ±											= 1052 ±1 = 5.4 ±1		
May 2,	1983 (-19	°C) Iso	thermal	Simple S	Support			1						
71 m	101 4	11 1		104.4	057	2102	7.2							
71 T	101.6	11.1	8.9	124.4	.057	2192		j						
72 T	101.6	11.7	9.0	171.7	.075	2783	6.9							
73 T	101.6	11.3	9.0	166.8	.071	2799	7.3	l						
74 B	101.6	11.5	8.7	97.1	.038 .048	1663	8.7	l						
75 B 76 B	101.6	11.5	8.7	97.1	.040	1745 1692	6.9							
77 B	101.6 101.6	11.5 11.3	8.5 8.9	89.6 82.1	.033	1465	8.0							
78 T	101.6	11.3	8.7	139.4	.033	2514	11.8							
,0 -	10110	,,,,	0.,	13714	••••	2317		l						
	T = 2572 : T = 8.3 :													
May 3,	1983 (-5	°C) Isoth	ermal Si	imple Su	pport			ı						
BEAM	L(cm)	w(cm)	h(cm)	P(kg)	d(cm)	S(kPa)	E(GPa)							
79 T	101.6	11.8	10.6	219.0	.097	2168	4.1							
80 T	101.6	11.9	10.6	199.2	,070	2247	5.2							
81 T	101.6	11.4	10.6	176.7	.054	2127	6.2							
62 T	101.6	11.5	10.6	194.1	.056	2199	6.6							
83 B	101.6	11.2	10.8	104.5	.027	1129	7.2							
84 B	101.6	12.0	10.9	107.0		1185		1						
85 B	101.6	11.2	10.8	129.4	.033	1544	7.1	1						
86 B	101.6	11.1	10.9	92.1	.030	1107	5.5	1						
87 T	101.6	10.7	11.1	199.1	.051	2330	6.9							
Ave. E	Fr = 2214 Fr = 5.8		. Eg •	6.6 ±1.0	0			•						

E(GPa)

6.1

6.2 4.6 3.9

9.2 9.3 9.6

10.0 10.0

104.5 159.3 161.8

.049 .064 .078

.021 .030 .032 .027

.032

1709 2576 2456

6.2 7.3 5.5

9.2 5.7 6.3 7.8

8.7

T T

SHEET 5 (UNSEEDED)

Parallel Simple Support

May 18, 1983 (-1°C) Cantilever

Ave. $S_T = 1849 \pm 237$; Ave. $S_B = 1852 \pm 227$ Ave. $E_T = 7.9 \pm 0.2$; Ave. $E_B = 8.2 \pm 1.2$

BEAM	L(cm)	W(CE)	h(cm)	P(kg)	d(cm)	S(kPa)	R/GPa\	BEAM	L(cm)	W(CE)	h(ca)	P(kg)	d(cm)	S(kPa)	E(GPa)
4 10															
1 T 2 T	107.5 108.5	11.1 11.0	9.0 9.2	12.8 15.9	.121 .152	897 1088	6.4	1 T 2 T	101.6 101.6	10.6 11.0	9.2 9.1	87.1 102.1	.033 .054	1526 1618	8.1 5.9
3 T	107.5	11.2	9.2	12.1	.111	807	6.1	3 T	101.6	11.2	9.3	92.1	.032	1572	8.3
4 T 5 T	108.0 106.5	10.6 11.8	9.2 9.2	13.6 18.7	.219	964 1174	4.4	4 T 5 T	101.6 101.6	11.0 11.0	9.5 9.3	89.6 104.5	.032 .035	1395 1717	7.7 8.7
6 T	108.0	10.8	9.2	15.1	. 143	1051	6.2	6	BROKEN						01,
7 B 8 B	107.0 95.0	11.0 11.5	9.2 9.6	14.4 14.8	.133	971 777	6.1	7 B 8 B	101.6 91.4	11.4 11.0	10.0 10.1	112.0 104.5	.041	1204 + 1321	
9 B	104.0	11.0	9.4	20.6	. 181	1297	5.5	9 B	101.6	11.0	10.1	99.5	.076	1394	3.0
10 B	103.5	10.5	9.6	18.5	. 162	1165	5.3	10 B	101.6	11.0	10.1	97.1		1361	
	= 997 ±1. = 5.8 ±0							Ave. S Ave. E	T = 1566 T = 7.7	±119; Av ±1.1ٍ; Av	e. S _B -	1359 ±37 3.0	7		
May 18,	1983 (-1	°C) Isof	thermal	Simple S	upport		İ								
11 B	101.6	9.9	8.5	107.0	.070	2317	6.4								
12 B	101.6	10.6	8.5	104.5		2121	١.٠٠								
13 B 14 T	101.6 101.6	10.5 10.3	8.7 8.5	107.0 89.6		1676 + 1509 +	ì								
15 Î	101.6	10.3	8.6	84.7		1691	9.5								
16 T	101.6	10.5	8.8	64.7		1314	7.7								
17 T 18 B	101.6 101.6	10.2 10.4	8.8 8.7	72.2 115.5		1444 2272	7.0 7.4								
19 T	101.6	10.1	8.8	79.7		1466	9.7								
May 19,	1983 (-	-5°C) Ca	ntilever	•				Parall	el Simple	Support	:				
BEAM	L(cm)	w(cm)	h(cm)	P(kg)	d(cm)	S(kPa)	E(GPa)	BEAM	L(ca)	W(CB)	h(cm)	P(kg)	d(cm)	S(kPa)	E(GPa)
21 T	BROKEN							l							
22 T	107 0							21 T	101.6	10.7	8.6	58.7	.029	1190	7.7
	107.0	11.1	8.1	9.0	.118	776	6.2	22 T	101.6 101.6	11.4	8.6 8.4	58.7 73.7	.029 .037	1190 1289	7.7 7.7
23 T	107.5	11.0	8.0	10.2	.137	917	6.5	22 T 23 T	101.6 101.6	11.4 11.5	8.4 8.5	73.7 80.6	.037 .035	1289 1532	7.7 8.4
23 T 24 T 25 T	107.5 106.5 108.0	11.0 11.4 11.4	8.0 8.1 8.0	10.2 12.7 10.0	.137 .175 .140	917 1061 872		22 T 23 T 24 T 25 T	101.6	11.4	8.4	73.7	.037	1289	7.7
23 T 24 T 25 T 26 B	107.5 106.5 108.0 107.5	11.0 11.4 11.4 11.1	8.0 8.1 8.0 7.8	10.2 12.7 10.0 12.3	.137 .175	917 1061 872 1150	6.5 5.7	22 T 23 T 24 T 25 T 26 B	101.6 101.6 101.6 101.6	11.4 11.5 11.3 11.3	8.4 8.5 8.4 8.4	73.7 80.6 69.7 77.2 51.8	.037 .035 .029 .033 .022	1289 1532 1388 1529 1089	7.7 8.4 9.3 8.9 9.2
23 T 24 T 25 T 26 B 27 B 28 B	107.5 106.5 108.0	11.0 11.4 11.4	8.0 8.1 8.0	10.2 12.7 10.0	.137 .175 .140	917 1061 872	6.5 5.7 6.1	22 T 23 T 24 T 25 T	101.6 101.6 101.6	11.4 11.5 11.3 11.3	8.4 8.5 8.4 8.4	73.7 80.6 69.7 77.2	.037 .035 .029 .033	1289 1532 1388 1529	7.7 8.4 9.3 8.9
23 T 24 T 25 T 26 B 27 B 28 B 29 B	107.5 106.5 108.0 107.5 107.5 102.5 105.0	11.0 11.4 11.4 11.1 10.9 11.5	8.0 8.1 8.0 7.8 7.7 7.9 7.8	10.2 12.7 10.0 12.3 13.6 18.1	.137 .175 .140 .191 .222 .261	917 1061 872 1150 1332 1524 1282	6.5 5.7 6.1 6.0 6.1 4.8	22 T 23 T 24 T 25 T 26 B 27 B 28 B	101.6 101.6 101.6 101.6 101.6 101.6 BROKEN 101.6	11.4 11.5 11.3 11.3 10.9 11.0	8.4 8.5 8.4 8.4 8.0	73.7 80.6 69.7 77.2 51.8 56.7	.037 .035 .029 .033 .022 .029	1289 1532 1388 1529 1089 1090	7.7 8.4 9.3 8.9 9.2 9.0
23 T 24 T 25 T 26 B 27 B 28 B 29 B 30 B	107.5 106.5 108.0 107.5 107.5 102.5 105.0 107.5	11.0 11.4 11.4 11.1 10.9 11.5 11.6 11.1	8.0 8.1 8.0 7.8 7.7 7.9 7.8 7.8	10.2 12.7 10.0 12.3 13.6 18.1 14.7 12.8	.137 .175 .140 .191 .222 .261	917 1061 872 1150 1332 1524	6.5 5.7 6.1 6.0	22 T 23 T 24 T 25 T 26 B 27 B 28 29 B 30 B	101.6 101.6 101.6 101.6 101.6 BROKEN 101.6	11.4 11.5 11.3 11.3 10.9 11.0	8.4 8.5 8.4 8.4 8.0 7.9	73.7 80.6 69.7 77.2 51.8 56.7 83.6 84.6	.037 .035 .029 .033 .022 .029	1289 1532 1388 1529 1089 1090	7.7 8.4 9.3 8.9 9.2 9.0
23 T 24 T 25 T 26 B 27 B 28 B 29 B 30 B	107.5 106.5 108.0 107.5 107.5 102.5 105.0	11.0 11.4 11.4 11.1 10.9 11.5 11.6 11.1	8.0 8.1 8.0 7.8 7.7 7.9 7.8 7.8	10.2 12.7 10.0 12.3 13.6 18.1 14.7 12.8	.137 .175 .140 .191 .222 .261	917 1061 872 1150 1332 1524 1282	6.5 5.7 6.1 6.0 6.1 4.8	22 T 23 T 24 T 25 T 26 B 27 B 28 29 B 30 B	101.6 101.6 101.6 101.6 101.6 101.6 BROKEN 101.6	11.4 11.5 11.3 11.3 10.9 11.0 11.3 11.7	8.4 8.5 8.4 8.4 8.0 7.9 7.8	73.7 80.6 69.7 77.2 51.8 56.7 83.6 84.6	.037 .035 .029 .033 .022 .029 .052 .051	1289 1532 1388 1529 1089 1090	7.7 8.4 9.3 8.9 9.2 9.0
23 T 24 T 25 T 26 B 27 B 28 B 29 B 30 B Ave. Sp Ave. Sp	107.5 106.5 108.0 107.5 107.5 102.5 105.0 107.5 = 907 ±1 = 6.1 ±0	11.0 11.4 11.4 11.1 10.9 11.5 11.6 11.1 19; Ave.	8.0 8.1 8.0 7.8 7.7 7.9 7.8 S _B = 12 E _B = 5	10.2 12.7 10.0 12.3 13.6 18.1 14.7 12.8 297 ±146 5.8 ±0.6	.137 .175 .140 .191 .222 .261 .194	917 1061 872 1150 1332 1524 1282 1195	6.5 5.7 6.1 6.0 6.1 4.8 6.1	22 T 23 T 24 T 25 T 26 B 27 B 28 29 B 30 B	101.6 101.6 101.6 101.6 101.6 BROKEN 101.6 101.6	11.4 11.5 11.3 11.3 10.9 11.0 11.3 11.7	8.4 8.5 8.4 8.4 8.0 7.9 7.8	73.7 80.6 69.7 77.2 51.8 56.7 83.6 84.6	.037 .035 .029 .033 .022 .029 .052 .051	1289 1532 1388 1529 1089 1090	7.7 8.4 9.3 8.9 9.2 9.0
23 T T 24 T T 25 B 26 B 27 B 30 B Ave. S ₁ Ave. E ₁	107.5 106.5 108.0 107.5 107.5 102.5 105.0 107.5 = 907 ±1 = 6.1 ±0	11.0 11.4 11.4 11.1 10.9 11.5 11.6 11.1 19; Ave. 1.3; Ave.	8.0 8.1 8.0 7.8 7.7 7.9 7.8 7.8 SB = 12 EB = 5	10.2 12.7 10.0 12.3 13.6 18.1 14.7 12.8 297 ±146 5.8 ±0.6	.137 .175 .140 .191 .222 .261 .194	917 1061 872 1150 1332 1524 1282 1195	6.5 5.7 6.1 6.0 6.1 4.8 6.1	22 T 23 T 24 T 25 T 26 B 27 B 28 29 B 30 B	101.6 101.6 101.6 101.6 101.6 BROKEN 101.6 101.6	11.4 11.5 11.3 11.3 10.9 11.0 11.3 11.7	8.4 8.5 8.4 8.4 8.0 7.9 7.8	73.7 80.6 69.7 77.2 51.8 56.7 83.6 84.6	.037 .035 .029 .033 .022 .029 .052 .051	1289 1532 1388 1529 1089 1090	7.7 8.4 9.3 8.9 9.2 9.0
23 T 24 T 25 T 26 B 27 B 28 B 30 B Ave. Sq Ave. Eq May 19, 31 T 32 T	107.5 106.5 108.0 107.5 107.5 102.5 105.0 107.5 = 907 ±1 = 6.1 ±0	11.0 11.4 11.4 11.1 10.9 11.5 11.6 11.1 19; Ave.	8.0 8.1 8.0 7.8 7.7 7.9 7.8 S _B = 12 E _B = 5	10.2 12.7 10.0 12.3 13.6 18.1 14.7 12.8 297 ±146 5.8 ±0.6	.137 .175 .140 .191 .222 .261 .194	917 1061 872 1150 1332 1524 1282 1195	6.5 5.7 6.1 6.0 6.1 4.8 6.1	22 T 23 T 24 T 25 T 26 B 27 B 28 29 B 30 B	101.6 101.6 101.6 101.6 101.6 BROKEN 101.6 101.6	11.4 11.5 11.3 11.3 10.9 11.0 11.3 11.7	8.4 8.5 8.4 8.4 8.0 7.9 7.8	73.7 80.6 69.7 77.2 51.8 56.7 83.6 84.6	.037 .035 .029 .033 .022 .029 .052 .051	1289 1532 1388 1529 1089 1090	7.7 8.4 9.3 8.9 9.2 9.0
23 T T 226 B 27 B 28 B 29 B 30 B Sq. Ave. 5 May 19 31 T T 32 33 T T	107.5 106.5 108.0 107.5 107.5 102.5 105.0 107.5 1983 (-5 101.6 101.6 101.6	11.0 11.4 11.1 10.9 11.5 11.6 11.1 19; Ave. 0.3; Ave.	8.0 8.1 8.0 7.8 7.7 7.9 7.8 8 = 12 E _B = 5 hermal S 10.3 10.3 10.3	10.2 12.7 10.0 12.3 13.6 18.1 14.7 12.8 297 ±146 5.8 ±0.6 Simple Su 161.3 151.8 131.9 156.8	.137 .175 .140 .191 .222 .261 .194 apport .041 .038 .037 .045	917 1061 872 1150 1332 1524 1282 1195	6.5 5.7 6.1 6.0 6.1 4.8 6.1 8.0 7.8 8.0 7.6	22 T 23 T 24 T 25 T 26 B 27 B 28 29 B 30 B	101.6 101.6 101.6 101.6 101.6 BROKEN 101.6 101.6	11.4 11.5 11.3 11.3 10.9 11.0 11.3 11.7	8.4 8.5 8.4 8.4 8.0 7.9 7.8	73.7 80.6 69.7 77.2 51.8 56.7 83.6 84.6	.037 .035 .029 .033 .022 .029 .052 .051	1289 1532 1388 1529 1089 1090	7.7 8.4 9.3 8.9 9.2 9.0
23 T T 24 T T 25 B 27 B 28 B 29 B 30 B Ave. Sq Ave. Eq. 31 T T 32 T T 334 T T	107.5 106.5 108.0 107.5 107.5 102.5 105.0 107.5 = 907 ±1 = 6.1 ±0 1983 (-5 101.6 101.6 101.6	11.0 11.4 11.1 10.9 11.5 11.6 11.1 19; Ave. 1.3; Ave.	8.0 8.1 8.0 7.8 7.7 7.9 7.8 S _B = 12 E _B = 5 hermal S 10.3 10.3 10.3 10.3	10.2 12.7 10.0 12.3 13.6 18.1 14.7 12.8 297 ±146 5.8 ±0.6 Simple Su 161.3 151.8 131.9 156.8 134.4	.137 .175 .140 .191 .222 .261 .194 apport .041 .038 .037 .045	917 1061 872 1150 1332 1524 1282 1195	6.5 5.7 6.1 6.0 6.1 4.8 6.1 8.0 7.8 8.0 7.6 6.1	22 T 23 T 24 T 25 T 26 B 27 B 28 29 B 30 B	101.6 101.6 101.6 101.6 101.6 BROKEN 101.6 101.6	11.4 11.5 11.3 11.3 10.9 11.0 11.3 11.7	8.4 8.5 8.4 8.4 8.0 7.9 7.8	73.7 80.6 69.7 77.2 51.8 56.7 83.6 84.6	.037 .035 .029 .033 .022 .029 .052 .051	1289 1532 1388 1529 1089 1090	7.7 8.4 9.3 8.9 9.2 9.0
23 T T 226 B 27 B B 29 B Ave. Sq Ave. Eq May 19, 31 T T 33 34 T T 35 B 36 B 8 37 B	107.5 106.5 108.0 107.5 107.5 102.5 105.0 107.5 = 907 ±1 = 6.1 ±0 1983 (-5 101.6 101.6 101.6 101.6 101.6	11.0 11.4 11.1 10.9 11.5 11.6 11.1 19; Ave. 0.3; Ave.	8.0 8.1 8.0 7.8 7.7 7.9 7.8 7.8 S _B = 12 E _B = 5	10.2 12.7 10.0 12.3 13.6 18.1 14.7 12.8 297 ±146 5.8 ±0.6 Simple Su 161.3 151.8 131.9 156.8	.137 .175 .140 .191 .222 .261 .194 .194	917 1061 872 1150 1332 1524 1282 1195	6.5 5.7 6.1 6.0 6.1 4.8 6.1 8.0 7.8 8.0 7.6	22 T 23 T 24 T 25 T 26 B 27 B 28 29 B 30 B	101.6 101.6 101.6 101.6 101.6 BROKEN 101.6 101.6	11.4 11.5 11.3 11.3 10.9 11.0 11.3 11.7	8.4 8.5 8.4 8.4 8.0 7.9 7.8	73.7 80.6 69.7 77.2 51.8 56.7 83.6 84.6	.037 .035 .029 .033 .022 .029 .052 .051	1289 1532 1388 1529 1089 1090	7.7 8.4 9.3 8.9 9.2 9.0
23 T 24 T 25 B 27 B 28 B 30 B Ave. Sq Ave. Eq May 19, 31 T 32 T	107.5 106.5 108.0 107.5 107.5 102.5 107.5 107.5 2 = 907 ±1 2 = 6.1 ±0 1983 (-5 101.6 101.6 101.6 101.6 101.6	11.0 11.4 11.1 10.9 11.5 11.6 11.1 19; Ave. 0.3; Ave.	8.0 8.1 8.0 7.8 7.7 7.9 7.8 S _B = 12 E _B = 5 hermal S 10.3 10.3 10.3 10.3	10.2 12.7 10.0 12.3 13.6 18.1 14.7 12.8 297 ±146 5.8 ±0.6 Simple Su 161.3 151.8 131.9 156.8 131.9	.137 .175 .140 .191 .222 .261 .194 apport .041 .038 .037 .045	917 1061 872 1150 1332 1524 1282 1195	6.5 5.7 6.1 6.0 6.1 4.8 6.1 8.0 7.8 8.0 7.8 8.0 7.8 8.0	22 T 23 T 24 T 25 T 26 B 27 B 28 29 B 30 B	101.6 101.6 101.6 101.6 101.6 BROKEN 101.6 101.6	11.4 11.5 11.3 11.3 10.9 11.0 11.3 11.7	8.4 8.5 8.4 8.4 8.0 7.9 7.8	73.7 80.6 69.7 77.2 51.8 56.7 83.6 84.6	.037 .035 .029 .033 .022 .029 .052 .051	1289 1532 1388 1529 1089 1090	7.7 8.4 9.3 8.9 9.2 9.0

SHEET 5 (Cont.) (UNSEEDED)

BEAM	1.(~~)	w(cm)	h(cm)	P(kg)	d(cm)	S(kDa)	E(GPa)	BEAM	L(ca)	w(cm)	h(cm)	P(kg)	d(cm)	S(kPa)	E(GPa
	L(cm)											_	u(cm)		E(UF
1 T 2 T	108.0 106.5	11.6 11.7	10.8 10.5	18.5 18.5	.099 .083	865 895	6.3 7.8	41 T 42	101.6 BROKEN	11.8	10.9	144.4		1602	
3 T	105.0	11.7	10.4	27.4	.181	1338	5.2	₹3 T	101.6	10.7	10.4	122.0		1641	
4 T 5 T	106.0	11.5	10.4	8.5	.064	426	4.8	44 T	101.6	11.6	10.9	114.5		1305	
5 T 6 T	106.5 BROKEN	11.2	10.5	23.2	.149	1175	5.7	45 T 46 T	101.6 101.6	10.9 11.4	10.8	109.5		1326 1435	
7 B	107.0	11.0	10.3	18.9	.135	1019	5.6	47	BROKEN	11.4	10.0	122.0		1433	
48 B	98.0	10.6	10.3	22.2	.159	1138	4.5	48 B	101.6	11.0	10.7	104.5		1159	
49 B	96.5	11.0	10.0	17.0	.124	877	4.4	49	BROKEN	10.7	10.1	*** 0		1201	
50 B 51 B	99.0 106.5	10.6 11.8	10.0 9.9	18.9 18.0	.146 .137	1038 973	4.6 5.5	50 B 51 B	91.4 101.6	10.7 11.8	10.1 10.5	112.0 114.5		1381 1381	
2 B	105.0	11.0	10.0	23.6	.188	1327	5.2	52 B	101.6	10.6	10.4	102.1		1396	
lve. S _T lve. B _T	= 940 ±3 = 6.0 ±1	48; Ave. .2; Ave.	S _B = 10 E _B = 5	62 ±155 .0 ±0.5				Ave. S	r = 1462	±155; %	æ. S _B •	• 1329 ±1	14		
lay 20,	1883 (-	19°C) I	otherma	l Simple	Suppor	t									
53 T	101.6	10.8	10.2	134.4		1855									
4 T	101.6	11.1	9.8	151.8		2010									
55 T 56 T	101.6 101.6	11.4 10.9	9.7 10.2	151.8 149.4		2186 2035	1								
7 B	101.6	11.2	9.6	161.8		2252									
58 B	101.6	11.6	10.1	161.8		2111	- 1								
59 B 50 B	91.4 101.6	11.4 10.9	10.3	196.6		2153									
50 B															
			10.0 10.5	149.4 154.3		1874 1741									
61 B 62 B	101.6 101.6 = 2022 ±	11.5 10.9	10.5 10.4	154.3 166.8		1741 1743			-						
61 B 62 B Ave.S _T	101.6 101.6 - 2022 ±	11.5 10.9 136; Ave	10.5 10.4 . S _B = 2	154.3 166.8		1741		Paral	Lel Simol	• Suppor	•				
51 B 52 B Ave.S _T May 23,	101.6 101.6 = 2022 ±	11.5 10.9 136; Ave	10.5 10.4 . S _B = 2	154.3 166.8 1026 ±211		1741 1743			lel Simpl			B/len)	4/_\	C (laBa)	2/02
61 B 62 B Awe. S _T May 23, BEAM	101.6 101.6 = 2022 ± , 1983 (-1 L(cm)	11.5 10.9 :136; Ave :10°C) Can w(cm)	10.5 10.4 . SB = 2 atilever h(cm)	154.3 166.8 2026 ±211	d(cm)	1741 1743 S(kPa)	E(GPa)	BEAM	L(cm)	w(ar)	h(cm)	P(kg)	d(cm)		E(GP
51 B 52 B Ave. S _T May 23, BEAM 63 T	101.6 101.6 = 2022 ± , 1983 (-1 L(cm) 107.5	11.5 10.9 136; Ave 10°C) Can w(cm) 11.5	10.5 10.4 . SB = 2 atilever h(cm) 11.0	154.3 166.8 2026 ±211 P(kg) 21.3	d(cm)	1741 1743 S(kPa) 966	5.5	BEAM 63 T	L(cm)	w(car) 10.6	h(cm)	122.0	d(cm) .037	1511	E(G2 6.2
51 B 52 B Ave. S _T May 23, BEAM 63 T 64 T	101.6 101.6 = 2022 ± 1983 (-1 L(cm) 107.5 107.0	11.5 10.9 :136; Ave (Cm) w(cm) 11.5 11.0	10.5 10.4 . SB = 2 atilever h(cm) 11.0 10.8	154.3 166.8 2026 ±211 P(kg) 21.3 25.1	d(cm) .124 .143	1741 1743 S(kPa) 966 1228	5.5 6.1	BEAM 63 T 64 T	L(cm) 101.6 101.6	w(car) 10.6 11.4	h(cm) 10.9 10.5	122.0 82.1	.037	1511 1043 +	6.2
61 B 62 B Ave. S _T May 23, BEAM 63 T 64 T 66 T	101.6 101.6 - 2022 ± 1983 (-1 L(cm) 107.5 107.0 107.0	11.5 10.9 136; Ave (cm) 11.5 11.0 11.5	10.5 10.4 . SB = 2 atilever h(cm) 11.0 10.8 10.8	154.3 166.8 1026 ±211 P(kg) 21.3 25.1 24.1 20.8	d(cm) .124 .143 .137 .124	1741 1743 S(kPa) 966 1228 1131 1113	5.5 6.1 5.8 6.7	63 T 64 T 65 T 66 T	L(cm) 101.6 101.6 101.6 101.6	w(car) 10.6 11.4 11.7	h(cm) 10.9 10.5 10.9 11.1	122.0 82.1 126.9 122.0	.037 .025 .032	1511 1043 + 1428 1359	6.2 8.5 6.3
51 B 52 B Ave. Sr May 23, BEAM 63 T 64 T 65 T 66 T	101.6 101.6 = 2022 ± 1983 (-1 L(cm) 107.5 107.0 107.0 107.0	11.5 10.9 136; Ave 10°C) Can w(cm) 11.5 11.0 11.5 11.3 11.5	10.5 10.4 . SB = 2 atilever h(cm) 11.0 10.8 10.8 10.2 10.2	154.3 166.8 1026 ±211 P(kg) 21.3 25.1 24.1 20.8 26.0	d(cm) .124 .143 .137 .124 .152	1741 1743 S(kPa) 966 1228 1131 1113 1225	5.5 6.1 5.8 6.7 5.7	63 T 64 T 65 T 66 T 67 T	L(cm) 101.6 101.6 101.6 101.6 101.6	W(cr) 10.6 11.4 11.7 11.4 11.5	h(cm) 10.9 10.5 10.9 11.1 10.9	122.0 82.1 126.9 122.0 144.4	.037 .025 .032 .043	1511 1043 + 1428 1359 1642	6.2 8.5 6.3 5.8
51 B 52 B Ave. S _T May 23, BEAM 63 T 64 T 65 T 66 T 66 T 68 B	101.6 101.6 - 2022 ± 1983 (-1 L(cm) 107.5 107.0 107.0 107.5 106.0	11.5 10.9 136; Ave (cm) 11.5 11.0 11.5 11.3 11.3	10.5 10.4 . SB = 2 atilever h(cm) 11.0 10.8 10.8 10.2 10.8	154.3 166.8 1026 ±211 P(kg) 21.3 25.1 24.1 20.8 26.0 24.6	d(cm) .124 .143 .137 .124 .152	1741 1743 S(kPa) 966 1228 1131 1113 11225 1178	5.5 6.1 5.8 6.7 5.7 5.6	63 T 64 T 65 T 66 T 67 T 68 B	L(cm) 101.6 101.6 101.6 101.6 101.6	w(cr) 10.6 11.4 11.7 11.4 11.5	h(cm) 10.9 10.5 10.9 11.1 10.9 10.9	122.0 82.1 126.9 122.0 144.4 149.4	.037 .025 .032 .043	1511 1043 + 1428 1359 1642 1616	6.2 8.5 6.3 5.8 7.4
il B i2 B we. S _T May 23, BEAM 63 T 66 T 66 T 66 T 66 B 69 B	101.6 101.6 - 2022 ± 1983 (-1 L(cm) 107.5 107.0 107.0 107.0 106.0 106.0 102.5	11.5 10.9 136; Ave 10°C) Can w(cm) 11.5 11.0 11.5 11.3 11.5	10.5 10.4 . SB = 2 atilever h(cm) 11.0 10.8 10.8 10.2 10.2	154.3 166.8 1026 ±211 P(kg) 21.3 25.1 24.1 20.8 26.0	d(cm) .124 .143 .137 .124 .152	1741 1743 S(kPa) 966 1228 1131 1113 1225	5.5 6.1 5.8 6.7 5.7 5.6 5.8	63 T 64 T 65 T 66 T 67 T	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6	W(cr) 10.6 11.4 11.7 11.4 11.5	h(cm) 10.9 10.5 10.9 11.1 10.9	122.0 82.1 126.9 122.0 144.4	.037 .025 .032 .043	1511 1043 + 1428 1359 1642	6.2 8.5 6.3 5.8
51 B 52 B Ave. S _T May 23, BEAM 63 T 64 T 66 T 66 T 66 B 69 B 70 B	101.6 101.6 101.6 101.6 101.6 1083 (-1 L(cm) 107.5 107.0 107.0 107.5 106.0 106.0 102.5 101.5	11.5 10.9 136; Ave U°C) Can w(cm) 11.5 11.0 11.5 11.8 11.8 11.8	10.5 10.4 . SB = 2 atilever h(cm) 11.0 10.8 10.8 10.2 10.8 10.5 10.5 10.4 11.4	P(kg) 21.3 25.1 24.6 29.8 26.0 24.6 29.3 23.6 27.0	d(cm) .124 .143 .137 .124 .152 .149 .172 .149	966 1228 1131 1113 1225 1178 1404 1155 1293	5.5 6.1 5.8 6.7 5.7 5.6 5.8 5.2	BEAM 63 T 64 T 65 T 66 T 67 T 68 B 69 B 70 B 71 B	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	W(cr) 10.6 11.4 11.7 11.5 11.5 11.6 11.4	h(cm) 10.9 10.5 10.9 11.1 10.9 10.7 10.7	122.0 82.1 126.9 122.0 144.4 149.4 174.2 151.8 112.0	.037 .025 .032 .043 .035 .038 .033	1511 1043 + 1428 1359 1642 1616 1991 1772 1214	8.5 6.3 5.8 7.4 8.1 8.2 8.1
51 B 52 B Ave. Sr May 23, BEAM 63 T 64 T 65 T 66 T 66 T 67 T 68 B 69 B 70 B	101.6 101.6 - 2022 ± 1983 (-1 L(cm) 107.5 107.0 107.0 107.0 106.0 106.0 102.5	11.5 10.9 136; Ave (cm) 11.5 11.3 11.5 11.8 11.8	10.5 10.4 . SB = 2 atilever h(cm) 11.0 10.8 10.8 10.2 10.8 10.5 10.5	154.3 166.8 1026 ±211 P(kg) 21.3 25.1 24.1 20.8 26.0 24.6 29.3 23.6	d(cm) .124 .143 .137 .124 .152 .149	1741 1743 S(kPa) 966 1228 1131 1113 1225 1178 1404 1155	5.5 6.1 5.8 6.7 5.7 5.6 5.8	BEAM 63 T 64 T 65 T 66 T 67 T 68 B 69 B 70 B	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6	W(cr) 10.6 11.4 11.7 11.4 11.5 11.5 11.6	h(cm) 10.9 10.5 10.9 11.1 10.9 10.7 10.7	122.0 82.1 126.9 122.0 144.4 149.4 174.2	.037 .025 .032 .043 .035 .038	1511 1043 + 1428 1359 1642 1616 1991	8.5 6.3 5.8 7.4 8.1 8.2
51 B 52 B Ave. S _T May 23, BEAM 63 T 64 T 66 T 66 T 67 B 70 B 71 B 72 B	101.6 101.6 101.6 101.6 101.6 1083 (-1 L(cm) 107.5 107.0 107.0 107.5 106.0 106.0 102.5 101.5	11.5 10.9 136; Ave W(cm) 11.5 11.3 11.5 11.8 11.8 11.4 11.5	10.5 10.4 . SB = 2 atilever h(cm) 11.0 10.8 10.2 10.8 10.5 10.5 10.4 11.4 10.2	154.3 166.8 1026 ±211 P(kg) 21.3 25.1 24.1 20.8 26.0 24.6 29.3 23.6 27.0 19.4	d(cm) .124 .143 .137 .124 .152 .149 .178 .133	966 1228 1131 1113 1225 1178 1404 1155 1293	5.5 6.1 5.8 6.7 5.7 5.6 5.8 5.2	BEAM 63 T 64 T 65 T 66 T 67 T 68 B 70 B 71 B 72 B	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6	W(cr) 10.6 i1.4 11.7 11.4 11.5 11.5 11.6 11.1 11.6 11.1 11.3	h(cm) 10.9 10.5 10.9 11.1 10.9 10.7 10.7 10.5	122.0 82.1 126.9 122.0 144.4 149.4 174.2 151.8 112.0 144.4	.037 .025 .032 .043 .035 .038 .037 .027 .035	1511 1043 + 1428 1359 1642 1616 1991 1772 1214	8.5 6.3 5.8 7.4 8.1 8.2 8.1
il B i2 B Ave. S _T May 23, BEAM 63 T 66 T 66 T 66 T 67 B 70 B 71 B 72 B Ave. S _T	101.6 101.6 101.6 101.6 101.6 1083 (-1 107.0 107.0 107.0 107.0 107.0 106.0 106.0 102.5 101.5 103.5 103.5	11.5 10.9 136; Ave W(cm) 11.5 11.0 11.5 11.8 11.8 11.4 11.5 11.0 kt0.5; Ave	10.5 10.4 . SB = 2 atilever h(cm) 11.0 10.8 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	P(kg) 21.3 25.1 24.6 29.8 26.0 24.6 27.0 19.4	d(cm) .124 .143 .137 .124 .152 .149 .178 .133	S(kPa) 966 1228 1131 1113 1225 1178 1404 1155 1293 1031	5.5 6.1 5.8 6.7 5.7 5.6 5.8 5.2	BEAM 63 T 64 T 65 T 66 T 67 T 68 B 70 B 71 B 72 B	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 5T = 1485	W(cr) 10.6 i1.4 11.7 11.4 11.5 11.5 11.6 11.1 11.6 11.1 11.3	h(cm) 10.9 10.5 10.9 11.1 10.9 10.7 10.7 10.5	122.0 82.1 126.9 122.0 144.4 149.4 174.2 151.8 112.0 144.4	.037 .025 .032 .043 .035 .038 .037 .027 .035	1511 1043 + 1428 1359 1642 1616 1991 1772 1214	8.5 6.3 5.8 7.4 8.1 8.2 8.1
51 B 52 B Ave. S _T May 23, BEAM 63 T 66 T 66 T 67 B 69 B 71 B 72 B Ave. S _T	101.6 101.6 101.6 101.6 101.6 1083 (-1 107.0 107.0 107.0 107.0 106.0 102.5 101.5 103.5	11.5 10.9 136; Ave W(cm) 11.5 11.0 11.5 11.8 11.8 11.4 11.5 11.0 kt0.5; Ave	10.5 10.4 . SB = 2 atilever h(cm) 11.0 10.8 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	P(kg) 21.3 25.1 24.6 29.8 26.0 24.6 27.0 19.4	d(cm) .124 .143 .137 .124 .152 .149 .178 .133	S(kPa) 966 1228 1131 1113 1225 1178 1404 1155 1293 1031	5.5 6.1 5.8 6.7 5.7 5.6 5.8 5.2	BEAM 63 T 64 T 65 T 66 T 67 T 68 B 70 B 71 B 72 B	L(cm) 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 101.6 5T = 1485	W(cr) 10.6 i1.4 11.7 11.4 11.5 11.5 11.6 11.1 11.6 11.1 11.3	h(cm) 10.9 10.5 10.9 11.1 10.9 10.7 10.7 10.5	122.0 82.1 126.9 122.0 144.4 149.4 174.2 151.8 112.0 144.4	.037 .025 .032 .043 .035 .038 .037 .027 .035	1511 1043 + 1428 1359 1642 1616 1991 1772 1214	6.2 8.5 6.3 5.8 7.4 8.1 8.2 8.1

73 T 101.6 11.4 12.9 256.4 2072
74 T 101.6 11.3 12.8 208.4 1735
75 T 101.6 11.8 12.9 255.7 1769
76 B 101.6 10.9 13.1 309.4 2523
77 B 101.6 11.4 12.5 246.2 1998
78 B 101.6 11.6 12.3 252.5 2206
79 T 101.6 11.9 12.1 230.4 2058
80 T 101.6 11.3 13.9 284.1 2007
81 B 101.6 11.5 14.0 249.4 1682
82 T 101.6 11.2 13.6 255.7 1909

Ave. $S_T = 1925 \pm 146$; Ave. $S_B = 2102 \pm 354$ +Off center break exceeding 10cm.

SHEET 6 (SEEDED-UNSEEDED)

June 7, 1	983 (-5'	'C) Centi	llever - So	eeded	
Test #1 -	· 10: No	results 1	because of	defective	load cell

June 7, 1983 (-5°C) Isothermal Simple Support	: -	Seeded
---	-----	--------

						•		
BE	M	L(cm)	w(cm)	h(ce)	P(kg)	d(cm)	S(kPa)	E(GPa)
11		91.4	11.1	8.2	112.0	.065	1783	5.3
12	T	91.4	9.6	8.1	97.1	.056	2130	6.4
13	T	91.4	11.7	8.2	146.9	.076	2577	5.6
14	T	91.4	9.3	8.0	99.6	.062	2306	6.3
15		91.4	9.7	8.2	99.6	.059	2131	5.9
16		91.4	10.2	7.7	94.6	.059	2174	6.5
17		91.4	10.3	7.4	89.6	.059	1885	6.8
18		91.4	10.7	8.0	62.2	.035	1298	6.1
19		91.4	9.5	8.2	63.7	.030		
							1393	7.5
20		91.4	10.2	8.2	75.7	.041	1551	6.1
21	В	91.4	11.3	8.2	85.6	.037	1564	7.0
22	В	91.4	11.2	8.0	77.2	.043	1492	5.9
23		BRUKEN				• • • •		
24	В	91.4	10.2	7.8	89.6	.041	1339	8.5
25	T	91.4	11.7	8.0	123.5	.070	2285	5.5
26	-		R MALFU			*010	,	J.J
27	Tr.				10/ 5	07/	0/03	
		91.4	10.6	7.8	124.5	.076	2687	6.1
28	Б	91.4	12.0	8.1	59.7	.025	1076	6.9
29	T	81.3	11.0	7.9	117.0		2120	

Ave. $S_T = 2208 \pm 276$; Ave. $S_B = 1388 \pm 171$ Ave. $E_T = 6.0 \pm 0.5$; Ave. $E_B = 6.9 \pm 0.9$

Jun	e 8,	1983 (-	5°C) Iso	thermal	Simple S	Support	- Unseed	ded
BEA	M	L(cm)	M(CE)	h(cm)	P(kg)	d(ca)	S(kPa)	E(GPa)
44	В							
45	B	91.4	12.1	11.1	171.7	.027	1598	7.2
46	В	91.4	12.5	10.7	248.9	.038	2367	8.0
47	В	91.4	8.7	10.7	126.9	.028	1749	9.7
48	В	91.4	12.0	10.8	201.6	.035	1734	7.1
49	В	91.4	9.4	10.6	141.9	.032	1841	7.5
50	T	94	12.0	10.8	186.7	.032	1855	6.7
51	T	91.4	9.3	10.7	144.4	.033	1601	7.1
52	T	91.4	12.7	10.7	149.3	.025	1433	7.1
53	T	91.4	9.3	10.5	164.3	.040	2135	7.2
54	T	91.4	10.5	10.5	161.8	.033	1933	7.5
55	T	91.4	9.4	11.2	149.3		1752	_
56	В	91.4	10.9	11.1	206.6	.048	2099	5.4
57	В	91.4	9.2	11.0	179.2	.035	2214	7.8
58	В	91.4	12.7	11.1	241.4	.041	2019	6.3
59	В	91.4	9.0	11.0	164.3	.037	2078	7.0
60	T	91.4	11.5	10.8	206.6		2124	
61	T	91.4	9.3	10.7	161.8	.049	2032	5.4
62		RECORDEN						
63	T	91.4	11.3	10.5	159.3	.030	1772	7.5
64	T	91.4	11.7	10.5	159.3	.035	1713	6.3
65	T	101.6	11.4	10.1	122.0	.033	1620	8.0
66	В	101.6	11.4	10.0	191.7	.061	2581	7.1

Ave. $S_T = 1815 \pm 225$; Ave. $S_B = 2028 \pm 307$ Ave. $E_T = 7.0 \pm 0.8$; Ave. $E_B = 7.3 \pm 1.1$

June 7, 1983 (-5°C) Cantilever - Unsecded

BEAM	L(cm)	w(cm)	h(cm)	P(kg)	d(cm)	S(kPa)	E(GPa)
30 T	DEFECTI	VE LOAD	CELL				
31 T	11	11	••				
32 B	105.5	11.2	9.9	15.5	.118	877	5.6
33 B	106.0	11.6	10.0	19.4	.143	1031	5.6
34 Bm	99.5	13.1	10.2	30.3	.178	1299	4.7
35 Bm	91.0	11.7	10.4	27.4	.178	1159	3.5
36 Bm	101.5	14.0	10.4	34.5	.207	1360	4.4
37 Hm	99.0	10.9	10.5	22.7	.149	1099	4.6
38 T	96.5	12.6	10.5		IVE LOA		
39 T	100.5	12.2	10.3	11	11		
40 T	103.0	12.7	10.2	**	**	11	
41 T	99.0	13.0	10.4	11	11	- 11	
42 T	102.0	13.4	10.2	11	11	11	
43 T	94.0	10.0	10.3	**	11	11	

Modified - Ave. $S_B = 1229 \pm 121$ Ave. $E_B = 4.3 \pm 0.5$

Unmodified - Ave. S_B = 954 ± 109 Ave. E_B = 5.6

m = modified, 5 cm. radii at butt end

BEA	M	L(cm)	w(cm)	h(cm)	P(kg)	d(cm)	S(kPa)	E(GPa)
67	The	105.0	13.5	11.8	33.4	.143	1096	4.8
68	The	98.5	13.6	11.5	39.1	.159	1258	4.6
69	Hm	99.0	13.8	11.4	35.8		1165	
70	Bon	91.0	11.7	11.0	34.3	.197	1309	3.3
71	Bm	107.0	13.0	10.5	29.3	.184	1287	5.1
72	Bm	96.5	10.7	10.4	24.3	.172	1198	4.2
73	The	106.0	10.9	10.4	21.5	.152	1145	5.4
74	T	106.0	11.3	10.2	16.7	.127	885	5.1
75	T	98.0	12.1	9.9	17.6	.140	857	4.0

Modified - Ave. S_T = 1166 ± 83; Ave. S_B = 1240 ± 69 Ave. E_T = 4.9 ±0.4; Ave. E_B = 4.2 ±0.9

Unmodified - Ave. S_T = 871 ± 20 Ave. E_T = 4.6 ±0.8

m = modified, 10 cm. radii at butt end

SHEET 7 (SEEDED)

July 11,	1983 (-5	°C) Can	tilever					Jul	y 14,	1983 (-	-10°C) Isc	othermal	Simple	Support	:	1
BEAM	Ľ(cr)	w(cm)	h(cm)	P(kg)	d(cm)	S(kPa)	E(GPa)	BEA	M	L(cm)	w(cm)	h(cm)	P(kg)	d(cm)	S(kPa)	E(GPa)
1 The	113.0	13.3	9.6	27.2		1475										
2 The	120.0	15.0	9.6	18.0		919		39	T	101.6	12.4	8.5	179.2	.090	3069	6.7
3 Thna	118.5	15.0	9.6	22.7		1144		40	Ť	101.6	12.5	8.5	119.5	.058	2058	6.9
4 Tm.	117.0	14.0	9.6	25.1		1338		41	Ť	101.6	11.3	9.0	139.4	.067	2352	6.5
5 10m	118.0	14.0	9.6	20.8		1119		42	Ť	101.6	11.2	9.2	149.3	.070	2428	6.6
6 Tha	118.0	14.0	9.6	23.6		1269		43	B	101.6	10.7	8.3	74.7	.070	1597	0.0
7 Tens	118.0	15.0	9.6	26.0		1311		44	Ŧ	101.6	11.0	8.5	119.5	.080	2328	5.7
8 T	107.0	11.0	8.4	9.5		770		45	B	101.6	11.5	8.6	72.2	.045	1349	5.6
9 T	107.5	11.4	8.4	9.0		707		46	В	101.6	11.2	8.8	94.6	.048	1708	6.6
10 T	108.5	9.8	8.5	13.7		1234		47	В	101.6	11.1	8.9	82.1	.038	1473	7.1
11 B	107.5	11.2	8.7	9.9		738		48	B	101.6	10.8	8.6	84.6	.048	1663	6.6
12 B	108.0	10.7	8.8	10.9		835		49	В	101.6	10.5	8.6	89.6	.048	1804	7.2
13 B	108.0	11.3	9.0	11.8		819		50	Ť	101.6	11.5	8.4	124.4	10.0	2373	′•-
14 B	108.0	11.0	9.1	12.3		857		51	Ť	101.6	11.4	8.2	122.0	.074	2462	6.7
15 Bm	111.0	14.0	9.2	18.9		1041		52	Ť	101.6	10.6	8.0	92.1	.048	2115	9.1
16 Bma	106.5	11.4	9.2	10.9		707		53	T	101.6	12.9	9.2	159.3	.064	2255	6.4
17 Bm.	108.5	12.7	9.2	16.5		979		54	T	101.6	10.7	9.3	107.1	.051	1803	6.3
18 Bm	107.0	11.3	8.8	13.7		985	i	55	В	101.6	12.2	9.2	94.6	.038	1444	6.7
19 Bm	112.0	14.3	8.3	10.4		695		56	В	101.6	10.4	9.0	84.6	.038	1577	7.6
20 Bm.	111.0	13.9	8.3	15.1		1029		57	В	101.6	11.8	8.5	87.1	.038	1608	8.1
21 Bm	108.0	11.6	8.5	9.9		750		58	В	101.6	11.1	8.9	94.6	.042	1685	7.4
22 Bm	101.0	11.5	8.7	11.3		771		59	T	91.4	11.5	8.8	149.3	.046	2316	7.8
23 Bm	110.0	12.9	8.5	12.3		854		60	В	71.1	11.7	8.4	129.4	.027	1679	6.1
24 'Im	109.5	11.7	8.5	16.1		1226		61	Ī	71.1	11.5	8.7	196.6	.038	2400	6.0
25 Tha	105.5	13.0	8.2	14.2		1008			-			•••				3.5
26 Tm	103.0	12.0	8.0	17.0		1341		Ave	. Ser	= 2329 1	1299; Ave	. So = 1	598 ±132)		
27 Tm	107.0	12.4	8.0	14.2		1126		Ave	. Er	= 6.8 1	10.9; Ave.	. Ka = 1	6.9 ±0.7			
28 Tm	109.5	12.2	7.8	12.8		1116			!	310	,	0				

Modified - Ave. $S_T = 1199 \pm 157$ Ave. $S_B = 868 \pm 142$

Unmodified - Ave. $S_T = 904 \pm 288$ Ave. $S_B = 812 \pm 52$

m = modified, 10cm. radii at butt end

Jul	y 12	, 1983 (-	5°C) Iso	thermal	Simple S	upport		
BEA	M	L(cm)	w(cm)	h(cm)	P(kg)	d(cm)	S(kPa)	E(GPa)
29 30 31 32 33 34 35 36 37 38	BBTTTTTT	101.6 101.6 101.6 101.6 101.6 101.6 101.6 91.4 81.3 81.3	12.7 11.5 12.6 10.5 11.7 12.2 1	9.6 9.6 10.0 9.6 10.0 9.9 9.3 9.6 10.1	109.5 117.0 117.0 171.7 99.6 164.3 243.9 176.7 221.5 189.2	.042 .045 .045 .035 .056 .080	1470 1721 1456 2298 1341 2081 2725 2367 2571 1906	6.0 6.6 5.3 6.3 6.2 5.8 6.5

Ave. $S_T = 2184 \pm 463$; Ave. $S_B = 1549 \pm 149$ Ave. $E_T = 6.2 \pm 0.3$; Ave. $E_B = 6.0 \pm 0.7$

SHEET 8 (SEEDED)

November	7, 1983	(-1°C) Cm	ntileve	r			-	November	8, 1983	(-1 °C)	Centileve	r			
BEAM	L(cm)	w(cm)	h(cm)	P(kg)	d(cm)	S(kPa)	E(GPa)	BEAM	L(cm)	w(ca)	h(cm)	P(kg)	d(cm)	S(kPa)	E(GPa)
1 T	105.0	9.4	10.4	10.1	.092	612	4.7	AT	104.5	10.4	8.0	7.3	.102	669	6.0
2 T	105.5	10.1	10.4	12.7	.102	723	5.0	ВТ	104.0	10.2	8.0	7.3	.114	641	5.4
3 T	106.0	10.6	10.5	13.5	.102	720	5.0	CT	104.0	9.4	8.0	7.3	.117	736	5.7
4 T	106.0	10.1	10.5	12.3	. 102	690	4.8	DT	103.5	10.4	8.1	8.4	.127	747	5.2
5 B	105.5	10.6	10.5	12.6	.099	666	5.0	ET	105.0	10.1	8.2	8.4	.127	761	5.4
6 B	104.5	10.1	10.6	14.4	,122	782	4.4	F B	104.5	10.2	8.3	7.8	.120	685	5.0
7 B	104.5	10.1	10.8	16.3	.137	852	4.2	G B	105.5	10.4	8.6	8.4	.124	675	4.7
8 B	104.5	10.2	10.6	12.4	.099	663	4.6	н в	105.0	10.1	8.7	8.8	.124	709	4.8
9 B	105.0	10.2	10.8	15.6	.127	810	4.3	I B	105.0	10.0	8.9	11.4	.152	891	4.8
10	BROKEN		_					JB	106.0	10.3	8.9	9.9	.143	756	4.5
11 Bm	105.0	10.5	10.5	18.1	.111	965	3.5	K Ban	92.0	10.4	9.3	15.5	.225	931	2.5
12 Bm	111.0	14.0	10.5	12.4		523		L Bra	106.0	11.1	9.0	14.8	.210	1023	4.1
13 Bm	100.0	11.5	10.4	20.4	.218	966	2.8	M Bon	109.5	13.5	8.9	12.9	. 203	775	3.4
14 Bm	110.0	13.3	10.1	19.1	.226	905	3.2	N Ban	104.5	12.6	8.5	13.4	.213	902	3.6
15 Bm	110.0	12.6	10.0	13.3		684		O Tra	106.0	11.2	8.4	13.9	. 264	1097	3.7
16 Tm	105.0	11.5	9.9	18.1	.229	988	3.2	P The	112.0	14.0	8.3	13.9	.251	950	3.8
17 12m	105.0	10.1	9.6	13.8	.213	913	3.3	Q The	110.0	11.8	8.3	11.1	.210	881	4.1
18 Tm	105.0	12.5	9.3	13.5	,203	771	3.0	R Tha	109.5	12.8	8.1	11.1	. 254	1038	3.3
19 Tm	105.0	11.7	9.2	13.7	.196	853	3.5	S Ton	111.0	13.5	8.1	14.3	.279	1054	3.8
20 Bm	106.0	10.8	9.0	13.8	.232	981	3.5	T Tm	111.0	13.6	8.0	13.7	.260	1029	4.1
21 Bm	113.0	15.5	8.4	13.7	.248	833	3.4	Ü	BROKEN BRUKEN						
Urmodific	ed - Ave.	Sr = 686	± 52:	Ave. SR	= 754	± 86		W The	107.5	11.7	7.2	22.0		1032	
	Ave.	$\mathbf{E}_{\mathbf{T}} = 4.9$	±0.2;	Ave. EB	- 4.5	±0.3									
Modified	- Ave.	S _T = 881	± 92;	Ave. SB	= 836	±173		Unmodifi	evA - be. evA	. ST =	711 ± 53; 5.5 ±0.3;	Ave. S Ave. E	B = 743 B = 4.8	± 88 ±0.2	
m = modi	AVE. Lfied, 10	$E_{T} = 3.2$ cm. radii		_	- 3.3	4V. 4		Modified	- Ave Ave	. Sr =	1012 ± 72 3.8 ±0.3	; Ave. ; Ave.	S _B = 90 E _B = 3.	8 ±102 4 ±0.7	
								m = Modi	ified, 10)cm radi	i at butt	end			

Nov	ember	8, 1983	(-1 °C)	laothern	al Simpl	e Suppo	rt	
BEA	M	L(cm)	w(cm)	h(cm)	P(kg)	d(cm)	S(kPa)	E(GPa)
1	T	101.6	10.5	10.5	126.9		1624	
2 3 4 5 6	T	101.6 BROKEN	10.0	10.7	124.5	.032	1305	8.2
4	B	101.6	10.0	10.4	72.2	.024	1034	6.9
5	В	101.6	10.7	10.5	67.2		917	
6 7 8	В	101.6 BROKEN	9.9	10.5	66.7	.034	979	4.4
8	T	101.6	9.8	10.7	149.4	.064	2053	5.0
9	T	101.6	10.2	10.7	156.8		1657	
10		BROKEN						
11		BROKEN						
12	В	101.6	10.6	10.5	82.1	.025	1075	6.9
13	В	91.4	11.4	10.2	77.2	.024	930	
14	T	101.6	11.2	10.1	169.5	.041	1501	6.0
15	T	101.6	11.5	10.0	102.1	.041	1395	5.6
16	В	101.6	11.6	9.9	74.7	.025	1055	6.8
17	В	101.6	10.5	9.7	59.7	.022	969	7.3
18	T	101.6	11.2	9.6	94.6	.024	1442	10.2
19	T	101.6	11.2	9.3	99.5	.051	1610	5.6
20	В	101.6	10.8	9.2	69.7	.027	1214	7.9
21	В	101.6	11.1	8.5	69.7	.035	1316	7.5
					054 ±133 6.8 ±1.1			

Hard to the state of the state

Nov	semper.	9, 1983	3 (-1°C) Isothermal Simple Support					
BEAM		L(cm)	w(cm)	h(cm)	P(kg)	d(ca)	S(kPa)	E(GPa)
A	T	101.6	9.8	8.1	52.3	.035	1253	7.4
В	T	101.6	9.9	8.0	58.7	.038	1458	7.8
C	T	101.6	9.8	8.0	61.7	.048	1557	6.6
D	T	101.6	10.2	8.1	60.8	.044	1415	6.6
E	T	101.6	10.2	8.3	66.7	.038	1501	7.7
F	В	101.6	9.9	8.5	42.8	.030	976	6.0
G	В	101.6	10.3	8.8	62.7	.032	1254	7.2
H	В	101.6	9.7	9.0	51.8	.025	1061	7.5
Ī	В	101.6	9.7	9.1	49.8	.025	1002	7.0
J	В	101.6	10.3	9.1	52.8		1001	
ĸ	В	91.4	10.1	9.6	67.2		1029 +	
L		BROKEN						
M	В	101.6	10.3	9.5	64.7	.027	1113	7.0
N	В	101.6	11.9	8.8	66.7	.029	1160	7.3
Ö	T	101.6	10.5	8.8	69.7	.029	1321	8.6
P	T	101.6	10.2	8.9	69.7	.049	1367	5.1
Q	Ť	101.6	10.4	8.9	74.7	.045	1432	5.8
Ř	T	101.6	10.6	8.6	67.7	.048	1243	5.4
R	-	BROKEN	•					
Ť		BROKEN						
Ū	В	101.6	11.3	8.4	51.8	.025	1053	8.3
v	В	101.6	10.6	8.2	47.8	.029	1087	7.3
Ŵ	B	101.6	9.6	7.5	39.8	.035	1195	7.2

Ave. $S_T = 1394 \pm 108$; Ave. $S_B = 1099 \pm 91$ Ave. $E_T = 6.8 \pm 1.2$; Ave. $E_B = 7.2 \pm 0.6$

+ Off center break exceeding 10cm.

A facsimile catalog card in Library of Congress MARC format is reproduced below.

Gow, Anthony J.

Temperature and structure dependence of the flexural strength and modulus of freshwater model ice / Anthony J. Gow, Herbert T. Ueda, John W. Govoni and John Kalafut. Hanover, N.H.: U.S. Army Cold Regions Research and Engineering Laboratory; Springfield, Va.: available from National Technical Information Service, 1988.

vi, 52 p., illus.; 28 cm. (CRREL Report 88-6.) Bibliography: p. 27.

1. Cantilever beam tests. 2. Flexural strength. 3. Freshwater model ice.
4. Ice structure. 5. Ice temperature. 6. Simply supported beam tests. 7.
Strain modulus. 8. Stress concentration. I. Ueda, Herbert T. II. Goveni,
John W. III. Kalafut, John. IV. United States Army. Corps of Engineers.
V. Cold Regions Research and Engineering Laboratory. VI. Series: CRREL
Report 88-6.